【題目】如圖,在△ABC中,∠ACB90°,ACBC,過點(diǎn)C在△ABC外作直線MN,AMNN于點(diǎn)MBNMNN

1)求證:△AMC≌△CNB;

2)求證:MNAM+BN

【答案】1)見解析;(2)見解析

【解析】

1)首先根據(jù)題干條件求出∠2=∠1,∠4=∠5,結(jié)合AC=BC,即可證明BNC≌△CMA;(2)由(1)得到AMCN,CMBN,即可證明出結(jié)論.

證明:(1)如圖:

AMMNBNMN,

∴∠4=∠590°,∠2+390

∵∠ACB90°,

∴∠1+390,

∴∠2=∠1,

AMCCNB

∴△AMC≌△CNBAAS);

2)由(1)得AMC≌△CNB

AMCN,CMBN

MNCN+CMAM+BN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(m,2)在直線:y=2x上,過點(diǎn)A的直線x軸交于點(diǎn)B(4,0).

(1)求直線的解析式;

(2)己知點(diǎn)P.的坐標(biāo)為(n,0,過點(diǎn)P垂直x軸的直線與,分別交于點(diǎn)C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AB的垂直平分線DE分別交AC、AB于點(diǎn)D、E.

(1)若∠A=46°,求∠CBD的度數(shù);

(2)若AB=8,△CBD周長(zhǎng)為13,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知:E是AOB的平分線上一點(diǎn),ECOA,EDOB,垂足分別為C、D.求證:

(1)ECD=EDC;

(2)OE是CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)MCD的邊上,且DM=1,ΔAEMΔADM關(guān)于AM所在的直線對(duì)稱,將ΔADM按順時(shí)針方向繞點(diǎn)A旋轉(zhuǎn)90°得到ΔABF,連接EF,則線段EF的長(zhǎng)為(

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】來自某綜合市場(chǎng)財(cái)務(wù)部的報(bào)告表明,商場(chǎng)201414月份的投資總額一共是2065萬元,商場(chǎng)2014年第一季度每月利潤(rùn)統(tǒng)計(jì)圖和201414月份利潤(rùn)率統(tǒng)計(jì)圖如下(利潤(rùn)率=利潤(rùn)÷投資金額).則商場(chǎng)20144月份利潤(rùn)是__萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線EF分別與直線AB,CD相交于點(diǎn)E,F,ABCDEM平分∠BEF,FM平分∠EFD.

1)求證:∠EMF90°

2)如圖2,若FN平分∠MFDEM的延長(zhǎng)線于點(diǎn)N,且∠BEN與∠EFN的比為43,求∠N的度數(shù).

3)如圖3,若點(diǎn)H是射線EA之間一動(dòng)點(diǎn),FG平分∠HFE,過點(diǎn)GGQEM于點(diǎn)Q,請(qǐng)猜想∠EHF與∠FGQ的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )

A. 30°B. 45°C. 60°D. 55°

查看答案和解析>>

同步練習(xí)冊(cè)答案