【題目】公司投資750萬元,成功研制出一種市場需求量較大的產(chǎn)品,并再投入資金1750萬元進行相關(guān)生產(chǎn)設(shè)備的改進.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當銷售單價定為120元時,年銷售量為24萬件;銷售單價每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額﹣生產(chǎn)成本)為z(萬元).
(1)求出y與x之間,z與x之間的函數(shù)關(guān)系式;
(2)該公司能否在第一年收回投資.
【答案】
(1)解:由題意得,
y=24﹣ ,即y= x+36,
z=(x﹣60)( x+36)= +42x﹣2160;
(2)解:z= +42x﹣2160= +2250,
當x=210時,第一年的年最大利潤為2250萬元,
∵2250<750+1750,
∴公司不能在第一年收回投資.
【解析】(1)根據(jù)年銷量=原銷量-因價格上漲減少的銷量,年獲利=單件利潤年銷售量,分別列出函數(shù)關(guān)系式即可;
(2)將z= x 2 +42x﹣2160變形成頂點式Z= ( x 210 ) 2 +2250,知當x=210時,第一年的年最大利潤為2250萬元,從而可知最大利潤值小于總投資,從而得出結(jié)論。
【考點精析】掌握二次函數(shù)的最值是解答本題的根本,需要知道如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數(shù)學 來源: 題型:
【題目】在一個口袋中有4個完全相同的小球,把它們分別標號為1、2、3、4,隨機摸取一個小球然后放回,再隨機地摸取一個小球.
(1)采用樹狀圖法(或列表法)列出兩次摸取小球出現(xiàn)的所有可能結(jié)果,并回答摸取兩球出現(xiàn)的所以可能結(jié)果共有幾種;
(2)求兩次摸取的小球標號相同的概率;
(3)求兩次摸取的小球標號的和等于4的概率;
(4)求兩次摸取的小球標號的和是2的倍數(shù)或3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF.
(1)AE與FC的位置關(guān)系如何?為什么?
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠l,可得AD平分∠BAC,理由如下:
∵AD⊥BC于D,EG⊥BC于G(已知),
∴∠ADC=∠EGC=90° ( ),
∴AD∥EG ( ),
∴∠1= ( ),
∠3=∠E(兩直線平行,同位角相等),
又∵∠E=∠1(已知),
∴∠2=∠3 ( ),
∴AD平分∠BAC ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.
計時制:0.05元/分;
包月制:50元/月(限一部個人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費0.02元/分.
(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應(yīng)該支付的費用.
(2)若某用戶估計一個月內(nèi)上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y= +bx﹣ 的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)b=;點D的坐標:;
(2)線段AO上是否存在點P(點P不與A、O重合),使得OE的長為1;
(3)在x軸負半軸上是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線OA與直線BC相交于點A,且點B的坐標為(5,﹣1),點C的坐標為(3,1),直線OA的解析式為y=3x
(1)求直線BC的解析式;
(2)求點A的坐標;
(3)求△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為BC邊的中點,以點D為頂點的∠EDF的兩邊分別與邊AB,AC交于點E,F(xiàn),且∠EDF與∠A互補.
(1)如圖1,若AB=AC,且∠A=90°,則線段DE與DF有何數(shù)量關(guān)系?請直接寫出結(jié)論;
(2)如圖2,若AB=AC,那么(1)中的結(jié)論是否還成立?若成立,請給出證明;若不成立,請說明理由;
(3)如圖3,若AB:AC=m:n,探索線段DE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形都是由相同大小的△按一定規(guī)律組成的,其中第(①個圖形中一共有3個△,第②個圖形中一共有8個△,第③個圖形中一共有14個△,…,按此規(guī)律排列下去,第⑨個圖形中的△個數(shù)為( )
A. 54B. 61C. 71D. 77
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com