分析 (1)連接AD.根據(jù)90°圓周角所對(duì)的弦是直角可知AD是圓O的直徑,在△ABD中,依據(jù)勾股定理可求得BD的長(zhǎng);
(2)連接OD,過(guò)點(diǎn)O作OF⊥BD,垂足為F.由垂徑定理可求得FD、BF的長(zhǎng),然后在△FOE中,依據(jù)勾股定理可求得EF的長(zhǎng),從而可求得BE的長(zhǎng).
解答 解:(1)如圖1所示:連接AD.
∵∠ABD=90°,
∴AD是圓O的直徑.
∴AD=10.
在Rt△ABD中,BD=$\sqrt{A{D}^{2}-A{B}^{2}}$=6.
(2)如圖2所示:連接OD,過(guò)點(diǎn)O作OF⊥BD,垂足為F.
∵OF⊥BD,BD=6,
∴BF=FD=3.
在Rt△ODF中,OF=$\sqrt{O{D}^{2}-F{D}^{2}}$=4.
在Rt△OFE中,EF=$\sqrt{O{E}^{2}-O{F}^{2}}$=2$\sqrt{5}$.
∴BE=FB+EF=3+2$\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查的是垂徑定理、圓周角定理、勾股定理的應(yīng)用,掌握此類問(wèn)題的輔助線的作法是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}×\sqrt{5}=\sqrt{10}$ | B. | $\sqrt{2}+\sqrt{5}=\sqrt{7}$ | C. | $\sqrt{18}÷\sqrt{2}=3$ | D. | $\sqrt{12}=2\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x3•x3=2x3 | B. | 4${\;}^{-2}=\frac{1}{16}$ | C. | $\sqrt{9}=±3$ | D. | (x3)2=x5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1<y2 | B. | y1=y2 | C. | y1>y2 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com