【題目】如圖,點A,B為定點,直線lAB,P是直線l上一動點.對于下列各值:①線段AB的長②PAB的周長③PAB的面積④∠APB的度數(shù)其中不會隨點P的移動而變化的是( 。

A. B. C. D.

【答案】A

【解析】

求出AB長為定值,PAB的距離為定值,再根據(jù)三角形的面積公式進行計算即可;根據(jù)運動得出PA+PB不斷發(fā)生變化、∠APB的大小不斷發(fā)生變化.

解:∵AB為定點,

∴AB長為定值,

∴①正確;

當(dāng)P點移動時,PA+PB的長發(fā)生變化,

∴△PAB的周長發(fā)生變化,

∴②錯誤;

A,B為定點,直線l∥AB,

∴PAB的距離為定值,故△APB的面積不變,

∴③正確;

當(dāng)P點移動時,∠APB發(fā)生變化,

∴④錯誤;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形 ABC (頂點是網(wǎng)格線交點的三角形)的頂點 A ,C 的坐標(biāo)分別是(-4 6) ,(-14)

(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請畫出△ABC 關(guān)于 x 軸對稱的△A1B1C1 ;并直接寫出A1B1C1的坐標(biāo).

(3)請在 y 軸上求作一點 P ,使△PB1C 的周長最小,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點,現(xiàn)有經(jīng)過點A的直線l:y=kx+b1與y軸交于點C,與拋物線的另個交點為D.

(1)求拋物線的函數(shù)表達式;

(2)若點D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點E為直線1下方拋物線上的一點,求ACE面積的最大值,并求出此時點E的坐標(biāo);

(3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點Q在拋物線上,若以點A,D,P,Q為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點Q的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,分別以AC,BC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC4,AB6,則EF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠1=∠2,EG平分∠AEC

1)如圖①,∠MAE45°,∠FEG15°,∠NCE75°.求證:ABCD;

2)如圖②,∠MAE140°,∠FEG30°,當(dāng)∠NCE   °時,ABCD;

3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,ABCD;

4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,△ABC的高BH,CM交于點P

1)求證:PBPC

2)若PB5,PH3,求AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中的老師工作很忙,但初一年級很多數(shù)學(xué)老師仍然堅持鍛煉身體,比如張老師就經(jīng)常堅持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時間x的關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(2x1)(﹣12x);

2xx1)﹣(x+1)(x2);

3

4;

5)(2mn2+(﹣2mn2;

6)(m2mn+n2)(m2+mn+n2);

7)(a+b)(ab+4ab38a2b2)÷4ab;

8)(2x3y6×(3y2x3÷(2x3y7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB25°,點M、N分別是邊OA、OB上的定點,點P、Q分別是邊OB、OA上的動點,記∠MPQα,∠PQNβ,當(dāng)MPPQQN最小時,則βα的值為( 。

A.50°B.40°C.30°D.25°

查看答案和解析>>

同步練習(xí)冊答案