【題目】如圖,在△ABC中,∠BAC=90°,分別以AC,BC為邊長(zhǎng),在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,則EF=______.
【答案】10
【解析】
過(guò)點(diǎn)A作AH⊥BC,過(guò)點(diǎn)F作FK⊥DE交DE延長(zhǎng)線于K,延長(zhǎng)BC交FK于點(diǎn)M,根據(jù)勾股定理可求出BC,利用面積法可求出AH,再次利用勾股定理可求出HC,然后證明△AHC≌△CMF即可得到CM和MF的值,最后利用勾股定理求EF即可.
解:過(guò)點(diǎn)A作AH⊥BC,過(guò)點(diǎn)F作FK⊥DE交DE延長(zhǎng)線于K,延長(zhǎng)BC交FK于點(diǎn)M,
∵AC=4,AB=6,
∴BC=,
∵,
∴,
∴HC=,
∵FK⊥DK,BM∥DK,
∴FK⊥BM,即∠CMF=90°,
∴∠AHC=∠CMF=90°,∠MCF+∠CFM=90°,
∵∠MCF+∠HCA=90°,
∴∠CFM=∠HCA,
又∵AC=CF,
∴△AHC≌△CMF(AAS),
∴CM=AH=,MF=HC=,
∵∠CEK=∠ECM=∠CMK=90°,
∴四邊形ECMK為矩形,
∴EK=CM=,FK=MF+MK=,
∴EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,.
求該反比例函數(shù)和一次函數(shù)的解析式;
在x軸上有一點(diǎn)點(diǎn)除外,使得與的面積相等,求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形紙片,對(duì)折矩形紙片ABCD,使AD與BC重合折痕為EF;展平后再過(guò)點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長(zhǎng)MN交BC于點(diǎn)有如下結(jié)論:;是等邊三角形;;為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)是
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境
小明和小麗共同探究一道數(shù)學(xué)題:
如圖①,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索發(fā)現(xiàn)
小明的思路是:延長(zhǎng)AD至點(diǎn)E,使DE=AD,構(gòu)造全等三角形.
小麗的思路是:過(guò)點(diǎn)C作CE∥AB,交AD的延長(zhǎng)線于點(diǎn)E,構(gòu)造全等三角形.
選擇小明、小麗其中一人的方法解決問(wèn)題情境中的問(wèn)題.
類比應(yīng)用
如圖②,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)O是BD的中點(diǎn),
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,則BC的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,,,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:________.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長(zhǎng)分別為a,a,a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積.
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為,,(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法畫出示意圖并求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司招聘外賣送餐員,送餐員的月工資由底薪1000元加上外賣送單補(bǔ)貼送一次外賣稱為一單構(gòu)成,外賣送單補(bǔ)貼的具體方案如下:
外賣送單數(shù)量 | 補(bǔ)貼元單 |
每月不超過(guò)500單 | 6 |
超過(guò)500單但不超過(guò)m單的部分 | 8 |
超過(guò)m單的部分 | 10 |
若某“外賣小哥”4月份送餐400單,則他這個(gè)月的工資總額為多少元?
設(shè)5月份某“外賣小哥”送餐x單,所得工資為y元,求y與x的函數(shù)關(guān)系式.
若某“外賣小哥”5月份送餐800單,所得工資為6500元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),直線l∥AB,P是直線l上一動(dòng)點(diǎn).對(duì)于下列各值:①線段AB的長(zhǎng)②△PAB的周長(zhǎng)③△PAB的面積④∠APB的度數(shù)其中不會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( 。
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD的紙片,長(zhǎng)AD=10厘米,寬AB=8厘米,AD沿點(diǎn)A對(duì)折,點(diǎn)D正好落在BC上的點(diǎn)F處,AE是折痕.
(1)圖中有全等的三角形嗎?如果有,請(qǐng)直接寫出來(lái);
(2)求線段EF的長(zhǎng);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com