【題目】如圖二次函數(shù)的圖象與軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象經(jīng)過(guò)

1)求二次函數(shù)的解析式;

2)寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;

3)若直線軸的交點(diǎn)為點(diǎn),連結(jié),求的面積;

【答案】1;(2;(34.

【解析】

1)直接將已知點(diǎn)代入函數(shù)解析式求出即可;

2)利用函數(shù)圖象結(jié)合交點(diǎn)坐標(biāo)得出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;

3)分別得出EO,AB的長(zhǎng),進(jìn)而得出面積.

1二次函數(shù)與軸的交點(diǎn)為

設(shè)二次函數(shù)的解析式為:

在拋物線上,

∴3=a(0+3)(0-1),

解得a=-1,

所以解析式為:;

2=x22x3,

二次函數(shù)的對(duì)稱軸為直線

點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn);

;

使一次函數(shù)大于二次函數(shù)的的取值范圍為

3)設(shè)直線BDymxn

代入B1,0),D23)得,

解得:

故直線BD的解析式為:yx1,

x0代入得,y=3,

所以E0,1),

∴OE1,

∵AB4,

∴SADE×4×3×4×14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】非洲豬瘟疫情發(fā)生以來(lái),豬肉市場(chǎng)供應(yīng)階段性偏緊和豬價(jià)大幅波動(dòng)時(shí)有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級(jí),增強(qiáng)豬肉供應(yīng)保障能力,國(guó)務(wù)院辦公廳于20199月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見(jiàn)》,某生豬飼養(yǎng)場(chǎng)積極響應(yīng)國(guó)家號(hào)召,努力提高生產(chǎn)經(jīng)營(yíng)管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場(chǎng)2019年每月生豬產(chǎn)量y(噸)與月份x,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.

1)請(qǐng)直接寫出當(dāng)x為整數(shù))和x為整數(shù))時(shí),yx的函數(shù)關(guān)系式;

2)若該飼養(yǎng)場(chǎng)生豬利潤(rùn)P(萬(wàn)元/噸)與月份x,且x為整數(shù))滿足關(guān)系式:,請(qǐng)問(wèn):該飼養(yǎng)場(chǎng)哪個(gè)月的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

1)利用尺規(guī)作圖,在BC邊上求作一點(diǎn)P,使得點(diǎn)P到邊AB的距離等于PC的長(zhǎng);(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

2)在(1)的條件下,以點(diǎn)P為圓心,PC長(zhǎng)為半徑的⊙P中,⊙P與邊BC相交于點(diǎn)D,若AC6,PC3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,、,將經(jīng)過(guò)旋轉(zhuǎn)、平移變化后得到如圖1所示的.

(1)求經(jīng)過(guò)、、三點(diǎn)的拋物線的解析式;

(2)連結(jié),點(diǎn)是位于線段上方的拋物線上一動(dòng)點(diǎn),若直線的面積分成兩部分,求此時(shí)點(diǎn)的坐標(biāo);

(3)現(xiàn)將、分別向下、向左以的速度同時(shí)平移,求出在此運(yùn)動(dòng)過(guò)程中重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某山區(qū)不僅有美麗風(fēng)光,也有許多令人喜愛(ài)的土特產(chǎn),為實(shí)現(xiàn)脫貧奔小康,某村組織村民加工包裝土特產(chǎn)銷售給游客,以增加村民收入.已知某種士特產(chǎn)每袋成本10.試銷階段每袋的銷售價(jià)x(元)與該士特產(chǎn)的日銷售量y(袋)之間的關(guān)系如表:

x(元)

15

20

30

y(袋)

25

20

10

若日銷售量y是銷售價(jià)x的一次函數(shù),試求:

1)日銷售量y(袋)與銷售價(jià)x(元)的函數(shù)關(guān)系式;

2)假設(shè)后續(xù)銷售情況與試銷階段效果相同,要使這種土特產(chǎn)每日銷售的利潤(rùn)最大,每袋的銷售價(jià)應(yīng)定為多少元?每日銷售的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點(diǎn)C.點(diǎn)F是圓O上異于B、C的動(dòng)點(diǎn),直線BF與l相交于點(diǎn)E,過(guò)點(diǎn)F作AF的垂線交直線BC與點(diǎn)D.

(1)如果BE=15,CE=9,求EF的長(zhǎng);

(2)證明:①△CDF∽△BAF;②CD=CE;

(3)探求動(dòng)點(diǎn)F在什么位置時(shí),相應(yīng)的點(diǎn)D位于線段BC的延長(zhǎng)線上,且使BC=CD,請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(7,1)、B(8,2)C(9,0)

(1)請(qǐng)?jiān)趫D中畫出△ABC的一個(gè)以點(diǎn)P (12,0)為位似中心,相似比為3的位似圖形△ABC(要求與△ABC同在P點(diǎn)一側(cè));

(2)請(qǐng)直接寫出點(diǎn)B′及點(diǎn)C′的坐標(biāo);

(3)求線段BC的對(duì)應(yīng)線段BC′所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yax+b的圖象與反比例函數(shù)y的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO5,sinAOC

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)連接OB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷售量為550臺(tái).假定該設(shè)備的年銷售量y(單位:臺(tái))和銷售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.

(1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;

(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷售單價(jià)應(yīng)是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案