【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點(diǎn)D,使得BD=CD,點(diǎn)E、F分別是線段BC、BD的中點(diǎn),連接AF和EF,作∠FEM=∠FDC,交AC于點(diǎn)M,如圖1所示.
(1)請(qǐng)判斷四邊形EFDM是什么特殊的四邊形,并證明你的結(jié)論;
(2)將∠FEM繞點(diǎn)E順時(shí)針旋轉(zhuǎn)到∠GEN,交線段AF于點(diǎn)G,交AC于點(diǎn)N,如圖2所示,請(qǐng)證明:EG=EN;
(3)在第(2)條件下,若點(diǎn)G是AF中點(diǎn),且∠C=30°,AB=3,如圖3,求GE的長(zhǎng)度.
【答案】(1)菱形,理由見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)先判斷出DF∥EM,進(jìn)而判斷出EF∥CD,得出四邊形DFEM是平行四邊形,再判斷出DF=DM,即可得出結(jié)論;
(2)先判斷出∠FEG=∠MEN,進(jìn)而判斷出∠DAF=∠ADF,即可得出∠AFE=∠CDF,進(jìn)而得出∠AFE=∠CME,進(jìn)而判斷出△EFG≌△EMN(AAS),即可得出結(jié)論;
(3)先求出BC=4,進(jìn)而求出CE=2,BD=,CD=,進(jìn)而求出FG=AF=,即可求出MN=FG=,再求出EF=CD=,進(jìn)而得出CN=,即可求出EH=CN=,CH=EH=,進(jìn)而得出EH=CE-CH=,最后用勾股定理即可得出結(jié)論.
菱形,理由如下:
∵E,F(xiàn)分別是BC,CD中點(diǎn).
∴FB=FD,,
∴,
又,
∴,
∴∴,M為DC中點(diǎn).
又DB=DC,
,
∴,
∴菱形FEMD,
(2)如圖,
由旋轉(zhuǎn)知,∠FEM=∠GEN,
∴∠FEG=∠MEN,
在Rt△ABD中,點(diǎn)F是BD中點(diǎn),
∴AF=DF,
∴∠DAF=∠ADF,
∵EF∥CD,
∴∠ADF=∠DFE,
∴∠DAF=∠DFE,
∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,
∵EM∥BD,
∴∠CDF=∠EMN,
∴∠AFE=∠CME,
由(1)知,四邊形DFEM是菱形,
∴EF=EM,
∴△EFG≌△EMN(AAS),
∴EG=EN;
(3)如圖,
在Rt△ABC中,∠C=30°,AB=2,
∴BC=4,∠ABC=60°,
∵點(diǎn)E是BC的中點(diǎn),
∴CE=2,
∵BD=CD,
∴∠CBD=∠C=30°,
∴∠ABD=30°,
∴BD=,
∴CD=,AF=BD=,
∵G是AF的中點(diǎn),
∴FG=AF=,
∵△EFG≌△EMN(AAS),
∴EG=EN,MN=FG=,
∵E,F(xiàn)是BC,BD的中點(diǎn),
∴EF=CD=,
∴DM=EF=,
∴CN=CD-DM-MN=
過(guò)點(diǎn)N作NH⊥BC于H
∴EH=CN=,CH=EH=,
∴EH=CE-CH=,
在Rt△ENH中,EN=,
∴EG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰直角三角形中,,點(diǎn)在邊上,連接,連接
(1)求證:
(2)點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,連接
①補(bǔ)全圖形并證明
②利用備用圖進(jìn)行畫(huà)圖、試驗(yàn)、探究,找出當(dāng)三點(diǎn)恰好共線時(shí)點(diǎn)的位置,請(qǐng)直接寫(xiě)出此時(shí)的度數(shù),并畫(huà)出相應(yīng)的圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線向下平移個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E在△ABC的邊BC上,AB=AC,AD=AE.
(1)求證:BD=CE;
(2)若AD=BD=DE,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=﹣的圖象上,點(diǎn)D在反比例函數(shù)y=(k≠0)的圖象上,AD∥x軸,AB⊥x軸于B,DC⊥x軸于C,若OB=OC,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問(wèn)題:
(1)這次知識(shí)競(jìng)賽共有多少名學(xué)生?
(2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小華參加了此次的知識(shí)競(jìng)賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com