【題目】如圖,在△ABC中,AC=BC,AB是⊙C的切線,切點(diǎn)為D,直線AC交⊙C于點(diǎn)E、F,且CF= AC.
(1)求∠ACB的度數(shù);
(2)若AC=8,求△ABF的面積.

【答案】
(1)解:連接CD,

∵AB是⊙C的切線,

∴CD⊥AB,

∵CF= AC,CF=CE,

∴AE=CE,

∴ED= AC=EC,

∴ED=EC=CD,

∴∠ECD=60°,

∴∠A=30°,

∵AC=BC,

∴∠ACB=120°.


(2)解:在Rt△ACD中,∠A=30°,AC=8,

∴AD=4 ,CD=4,

∴AB=2AD=8

作FM⊥AB交AB于M,

∵CD⊥AB,

∴△ACD∽△AFM,

,

,

∴FM=6,

∴△ABF的面積= ×ABFM= ×8 ×6=24 ,


【解析】(1)連接DC,根據(jù)AB是⊙C的切線,所以CD⊥AB,根據(jù)CD= ,得出∠A=30°,因?yàn)锳C=BC,從而求得∠ACB的度數(shù).(2)解直角三角形求得AD,進(jìn)而求得AB,作FM⊥AB交AB于M,證得△ACD∽△AFM,根據(jù)相似三角形的性質(zhì)求得FM,即可求得三角形的面積.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用切線的性質(zhì)定理,掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過(guò)A(2,0)、B(0,﹣6)兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BCE,若BC=20cm,則△DEB的周長(zhǎng)為___cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形網(wǎng)格中小方格邊長(zhǎng)為1,請(qǐng)你根據(jù)所學(xué)的知識(shí)解決下面問(wèn)題

1)求網(wǎng)格圖中ABC的面積

2)判斷ABC是什么形狀?并所明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)PBC邊上運(yùn)動(dòng). 當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組和分式方程:
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某零件如圖所示,圖紙要求∠A=90°,B=32°,C=21°,當(dāng)檢驗(yàn)員量得∠BDC=145°,就斷定這個(gè)零件不合格,你能說(shuō)出其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、M在BC上,則∠EAN=_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案