【題目】△ABC中,AD⊥BC于點D,BE是∠ABC的平分線,已知∠ABC=40°,∠C=60°,求∠AOB的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=8,AB=10,△ABC的面積為30,AD平分∠BAC,F、E分別為AC、AD上兩動點,連接CE、EF,則CE+EF的最小值為_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等,直線y=3x-7與這條拋物線交于兩點,其中一點橫坐標為4,另一點是這條拋物線的頂點M.
(1)求頂點M的坐標.
(2)求這條拋物線對應的函數(shù)解析式.
(3)P為線段BM上一點(P不與點B,M重合),作PQ⊥x軸于點Q,連接PC,設(shè)OQ=t,四邊形PQAC的面積為S,求S與t的函數(shù)解析式,并直接寫出t的取值范圍.
(4)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,求出點N的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進600個旅游紀念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀念品共獲利1250元,問第二周每個旅游紀念品的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(2,0),B(4,0),且過點C(0,4).
(1)求出拋物線的表達式和頂點坐標;
(2)請你求出拋物線向左平移3個單位長度,再向上平移1.5個單位長度后拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,垂足為,為直線上一動點(不與點重合),在的右側(cè)作,使得,連接.
(1)求證:;
(2)當在線段上時
① 求證:≌;
② 若, 則;
(3)當CE∥AB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,,射線在這個角的內(nèi)部,點、分別在的邊、上,且,于點,于點.求證:;
(2)如圖②,點、分別在的邊、上,點、都在內(nèi)部的射線上,、分別是、的外角.已知,且.求證:;
(3)如圖③,在中,,.點在邊上,,點、在線段上,.若的面積為15,求與的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A.25B.12.5C.5D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
問題情境:
在數(shù)學綜合與實踐課上,張老師啟示大家利用直線、線段以及點的運動變換進行探究活動.變換條件如下:如圖 1,直線 AB,AC,BC 兩兩相交于 A,B,C 三點,得知△ABC是等邊三角形,點 E 是直線 AC 上一動點(點 E 不與點 A,C 重合),點 F 在直線 BC上,連接 BE,EF,使 EF=BE.
獨立思考:
(1)張老師首先提出了這樣一個問題:如圖 1,當E是線段 AC 的中點時,確定線段 AE與 CF 的數(shù)量關(guān)系,請你直接寫出結(jié)論:AE____ CF(填“>” “<”或“=”).
提出問題:
(2)“奮斗”小組受此問題的啟發(fā),提出問題:若點E是線段 AC 上的任意一點,其他條件不變,(1)中的結(jié)論是否成立?該小組認為結(jié)論仍然成立,理由如下:如圖 2,過點 E作 ED∥BC,交 AB 于點 D. (請你補充完整證明過程)
拓展延伸:
(3)“縝密”小組提出的問題是:動點E的運動位置如圖3,圖4所示,其他條件不變,根據(jù)題意補全圖形,并判斷線段AE與CF的數(shù)量關(guān)系是否發(fā)生變化? 請你選擇其中一種予以證明.
(4)“愛心”小組提出的問題是:若等邊△ABC 的邊長為 ,AE=1,則BF 的長為__________.(請你直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com