小明家今年種植櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖表.日銷售量y(單位:kg)與上市時間x(單位:天)的函數(shù)關(guān)系如圖13所示,櫻桃單價w(單位:元/ kg)與上市時間x(單位:天)的函數(shù)關(guān)系列表所示,第1天到第a天的單價相同,第a天之后,單價下降,w與x之間是一次函數(shù)關(guān)系.

櫻桃單價w與上市時間x的關(guān)系

x(天)
1
a
9
11
13

w(元/kg)
32
32
24
20
16

 
請解答下列問題:
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;
(3)求a的值;
(4)第12天的銷售金額是最多的嗎?請說明你的觀點和依據(jù).

(1)120kg;(2)當0≤x≤12時,y=10x;當12≤x≤20時,y=-15x+300;(3)5;(4)第12天的銷售金額不是最多的.

解析試題分析:(1)根據(jù)函數(shù)圖象的最高點的縱坐標解答;
(2)分0≤x≤12和12≤x≤20兩段,利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)利用待定系數(shù)法求一次函數(shù)解析式求出W與x的關(guān)系式,再求出W=32時的自變量的值即為a;
(4)求出x=12和10時的銷售金額,比較即可判斷.
(1)日銷售量的最大值是120 kg;
(2)①當0≤x≤12時,函數(shù)圖象過原點和(12,120)兩點,
設(shè)日銷售量y與上市時間x的函數(shù)解析式為y=kx,
由待定系數(shù)法得,120=12k,∴k=10,
即日銷售量y與上市時間x的函數(shù)解析式為y=10x;
②當12≤x≤20時,函數(shù)圖象過(20,0)和(12,120)兩點,
設(shè)日銷售量y與上市時間x的函數(shù)解析式為y=kx+b,
由待定系數(shù)法得,,解得,
即日銷售量y與上市時間x的函數(shù)解析式為y=-15x+300;
(3)設(shè)第a天之后,櫻桃單價w與上市時間x的函數(shù)解析式為w=kx+b,
由待定系數(shù)法得,,解得
即櫻桃單價w與上市時間x的函數(shù)解析式為w=-2x+42,
當w=32時,x=5,所以a的值為5.
(4)第12天的銷售金額不是最多的.
當x=12時,日銷售量y=120千克,櫻桃單價w=18元,銷售金額為18×120=2160元;
當x=10時,日銷售量y=100千克,櫻桃單價w=22元,銷售金額為22×100=2200元;
∵2200>2160,
∴第12天的銷售金額不是最多的.     
考點:一次函數(shù)的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,Rt△PBD的斜邊PB落在y軸上,tan∠BPD=.延長BD交x軸于點C,過點D作DA⊥x軸,垂足為A,OA=4,OB=3.
(1)求點C的坐標;
(2)若點D在反比例函數(shù)y=(k>0)的圖象上,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間函數(shù)圖象如圖所示.
(1)求數(shù)量y與時間x之間函數(shù)關(guān)系式.
(2)求乙組加工零件總量a值.
(3)甲乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,裝箱時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一條直線上依次有A、B、C三地,自行車愛好者甲、乙兩人同時分別從A、B兩地出發(fā),沿直線勻速騎向C地.已知甲的速度為20 km/h,設(shè)甲、乙兩人行駛x(h)后,與A地的距離分別為y1、y2 (km), y1、y2 與x的函數(shù)關(guān)系如圖所示.
(1)求y2與x的函數(shù)關(guān)系式;
(2)若兩人在出發(fā)時都配備了通話距離為3km的對講機,求甲、乙兩人在騎行過程中可以用對講機通話的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,反比例函數(shù)與一次函數(shù)的圖象交于A(3,1)、B(m,-3)兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)若點P是直線上一點,且OP=OA,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,點A(,0),點B(0,2),點C是線段OA的中點.
(1)點P是直線AB上的一個動點,當PC+PO的值最小時,
①畫出符合要求的點P(保留作圖痕跡);
②求出點P的坐標及PC+PO的最小值;
(2)當經(jīng)過點O、C的拋物線y=ax2+bx+c與直線AB只有一個公共點時,求a的值并指出這個公共點所在象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在平行四邊形ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.
(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點Q作QR∥AB,交AD于點R,連結(jié)BR,如圖②.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半小時后返回A地.如果是他們離A地的距離y(千米)與時間x(時)之間的函數(shù)關(guān)系圖象.

(1)求甲從B地返回A地的過程中,y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?

查看答案和解析>>

同步練習冊答案