【題目】已知:如圖,在ABC中,∠ABC3C,∠1=∠2,BEAE 求證:ACAB2BE.

【答案】見解析.

【解析】

延長BEACM,利用三角形內(nèi)角和定理,得出∠3=4,AB=AM,∴AC-AB=AC-AM=CM.再利用∠4是△BCM的外角,再利用等腰三角形對邊相等,CM=BM利用等量代換即可求證.

證明:延長BEACM

BEAE

∴∠AEB=AEM=90°

在△ABE中,

∵∠1+3+AEB=180°,

∴∠3=90°-1

同理,∠4=90°-2

∵∠1=2,

∴∠3=4

AB=AM

BEAE,

BM=2BE

AC-AB=AC-AM=CM,

∵∠4是△BCM的外角

∴∠4=5+C

∵∠ABC=3C,∴∠ABC=3+5=4+5

3C=4+5=25+C

∴∠5=C

CM=BM

AC-AB=BM=2BE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標系中,點 A 2,2)、B0,1)點 P x 軸上,且PAB 的等腰三角形,則滿足條件的點 P 共有()個

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OMOE,上的動點(AB不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設(shè)∠OAC=x,

1)如圖1,若ABON,則

①∠ABO的度數(shù)是______;

②當∠BAD=ABD時,x=______;

當∠BAD=BDA時,x=______

2)如圖2,若ABOM,則是否存在這樣的x的值,使得ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過正方形ABCD的頂點DDEAC,交BC的延長線于點E

1)判斷四邊形ACED的形狀,并說明理由;

2)若CE=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DEAC.

(1)求證:DE是圓O的切線;

(2)若C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC,∠ACB=2∠B,∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥AOH,分別交直線AB、AC、BC、于點N、E、M.

(1)當直線l經(jīng)過點C時(如圖2),求證:BN=CD;

(2)當MBC中點時,寫出CECD之間的等量關(guān)系,并加以證明

(3)請直接寫出BN、CE、CD之間的等量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

已知:如圖,點D、E、F分別在線段AB、BC、AC上,連接DEEF、DM平分∠ADEEF于點M,,求證:。

證明:(已知)

(平角定義)

∴∠2=∠BEM(____________________)

__________(_________________________)

(_____________________________)

(_____________________________)

又∵DM平分∠ADE(已知)

(角平分線定義)

(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在ABCD中,對角線AC、BD相交于點O.請找出圖中的一對全等三角形,并給予證明;

(2)規(guī)定:一條弧所對的圓心角的度數(shù)作為這條弧的度數(shù).

①如圖,在⊙O中,弦AC、BD相交于點P,已知弧AB、弧CD分別為65°45°,求∠APB;

②一般地,在⊙O中,弦AC、BD相交于點P,若弧AB、弧CD分別為,求∠APB.

(用m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 AB=AC,CD⊥ABDBE⊥ACE,BECD相交于點O

1)求證AD=AE

2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.

查看答案和解析>>

同步練習冊答案