【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長為20,求BC的長.
【答案】(1)30°;(2)8.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性質(zhì),即可求得∠ABC的度數(shù),然后由AB的垂直平分線MN交AC于點D,根據(jù)線段垂直平分線的性質(zhì),可求得AD=BD,繼而求得∠ABD的度數(shù),則可求得∠DBC的度數(shù);
(2)根據(jù)AE=6,AB=AC,得出CD+AD=12,由△CBD的周長為20,代入即可求出答案.
(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵AB的垂直平分線MN交AC于點D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=30°;
(2)∵AE=6,
∴AC=AB=2AE=12,
∵△CBD的周長為20,
∴BC=20﹣(CD+BD)=20﹣(CD+AD)=20﹣12=8,
∴BC=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輪船在P處測得燈塔A在正北方向,燈塔B在南偏東30°方向,輪船向正東航行了900m,到達Q處,測得A位于北偏西60°方向, B位于南偏西30°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A、B間的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗,某食品廠為了解市民對去年銷售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A,B,C,D表示這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?將不完整的條形圖和扇形圖補充完整;
(2)若居民區(qū)有8000人,請估計愛吃C ,D粽的總?cè)藬?shù);
(3)若有外型完全相同的A,B,C,D粽各一個煮熟后,小王吃了兩個,用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B分別在x軸、y軸上(OA>OB),以AB為直徑的圓經(jīng)過原點O,C是的中點,連結(jié)AC,BC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則△ABC的面積等于5;③若OA﹣OB=4,則點C的坐標(biāo)是(2,﹣2).其中正確的結(jié)論有( )
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線與x、y軸交于B、C兩點,A(0,0),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第n個等邊三角形的邊長等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鍛煉身體,強健體魄,小明和小強約定每天在兩家之間往返長跑20分鐘. 兩家正好在同一直線道路邊上,某天小明和小強從各自的家門口同時出發(fā),沿兩家之間的直線道路按各自的速度勻速往返跑步,已知小明的速度大于小強的速度. 在跑步的過程中,小明和小強兩人之間的距離y(米)與他們出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,在他們3次相遇中,離小明家最近那次相遇時距小明家____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.計算:
(1)23﹣17﹣(﹣7)+(﹣16)
(2)
(3) -1.2×4÷(-)+÷(--2an =1) ×(-)
(4)﹣14﹣8÷(﹣2)3+22×(﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)與x軸交于點A,與y軸交于點B.將△AOB沿過點B的直線折疊,使點O落在AB邊上的點D處,折痕交x軸于點E.
(1)求直線BE的解析式;
(2)求點D的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△DBE.
(1)當(dāng)旋轉(zhuǎn)成如圖①,點E在線段CA的延長線上時,則∠CED的度數(shù)是 度;
(2)當(dāng)旋轉(zhuǎn)成如圖②,連接AD、CE,若△ABD的面積為4,求△CBE的面積;
(3)點M為線段AB的中點,點P是線段AC上一動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點P′,連接MP′,如圖③,直接寫出線段MP′長度的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com