【題目】如圖①,已知拋物線yax24amx+3am2a、m為參數(shù),且a0m0)與x軸交于AB兩點(diǎn)(AB的左邊),與y軸交于點(diǎn)C

1)求點(diǎn)B的坐標(biāo)(結(jié)果可以含參數(shù)m);

2)連接CACB,若C0,3m),求tanACB的值;

3)如圖②,在(2)的條件下,拋物線的對稱軸為直線lx2,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),F是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P,使△POF成為以點(diǎn)P為直角頂點(diǎn)的的等腰直角三角形.若存在,求出所有符合條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由.

【答案】1B3m,0);(2tanACB;

3)點(diǎn)P的坐標(biāo)是:()或()或()或().

【解析】

1)令y0,解方程ax24amx+3am20,即可求出點(diǎn)B的坐標(biāo);

2)過點(diǎn)AADBC,垂足為點(diǎn)D,可得△BOC為等腰直角三角形,求出AD,CD,則tanACB的值為;

3)求出拋物線的解析式,分不同的情況:①當(dāng)P在對稱軸的左邊,如圖3,過PMNy軸,交y軸于M,交lN,證明△OMP≌△PNF,根據(jù)|OM||PN|,列方程可得點(diǎn)P的坐標(biāo);同理可得其他圖形中點(diǎn)P的坐標(biāo),②當(dāng)P在對稱軸的左邊,過PMNx軸于N,過FFMMNM,同理得△ONP≌△PMF,則可求出點(diǎn)P的坐標(biāo).

解:(1)令y0,則有ax24amx+3am20,

解得:x1mx23m,

m0,AB的左邊,

B3m,0);

2)如圖1,過點(diǎn)AADBC,垂足為點(diǎn)D,

由(1)可知B3m,0),則△BOC為等腰直角三角形,

OCOB3m,

BC3m,

又∵∠ABC45°,

∴∠DAB45°,

ADBD

AB2m

m,CD2m

tanACB

3)∵由題意知x2為對稱軸,

2m2,

m1,

∵在(2)的條件下有(03m),

3m3am2,

解得m,即a1,

∴拋物線的解析式為yx24x+3,

①當(dāng)P在對稱軸的左邊,如圖2,過PMNy軸,交y軸于M,交lN,

∵△OPF是等腰直角三角形,且OPPF,

易得△OMP≌△PNF,

OMPN,

Pm,m24m+3),

則﹣m2+4m32m

解得:m,

P的坐標(biāo)為(,)或();

②當(dāng)P在對稱軸的右邊,

如圖3,過PMNx軸于N,過FFMMNM,

同理得△ONP≌△PMF

PNFM,

則﹣m2+4m3m2,

解得:x;

P的坐標(biāo)為()或();

綜上所述,點(diǎn)P的坐標(biāo)是:()或()或()或().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yk≠0,x0)的圖象與矩形OABC的邊AB、BC分別交于點(diǎn)E、FE,6),且EBC的中點(diǎn),Dx軸負(fù)半軸上的點(diǎn).

1)求反比倒函數(shù)的表達(dá)式和點(diǎn)F的坐標(biāo);

2)若D(﹣,0),連接DEDF、EF,則DEF的面積是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結(jié)論:①abc>0;b<a+c;4a+2b+c>0;a+b+c>m(am+b)+c(m1的實(shí)數(shù)),其中正確的結(jié)論有 ( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AB6,AC8DAC中點(diǎn),EAB上的動(dòng)點(diǎn),將ED繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到FD,連CF,則線段CF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線yx+4x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B

1)求拋物線解析式;

2)點(diǎn)Cm,0)是x軸上異于A、O點(diǎn)的一點(diǎn),過點(diǎn)Cx軸的垂線交AB于點(diǎn)D,交拋物線于點(diǎn)E

①當(dāng)點(diǎn)E在直線AB上方的拋物線上時(shí),連接AEBE,求SABE的最大值;

②當(dāng)DEAD時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為.

(1)畫出關(guān)于軸對稱的;

(2)以點(diǎn)為位似中心,在如圖所示的網(wǎng)格中畫出的位似圖形,使 的相似比為;

(3)點(diǎn)的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有若干個(gè)除顏色外其余均相同的紅、黃、藍(lán)三種顏色的小球,其中紅球2個(gè),籃球1個(gè),若從中任意摸出一個(gè)球,摸到球是紅球的概率為

1)求袋中黃球的個(gè)數(shù);

2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后解答問題.

材料:從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線例如:如圖,AD把△ABC分成△ABD與△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割線.

解答下列問題:

1)如圖,在△ABC中,∠B40°,AD是△ABC的完美分割線,且△ABD是以AD為底邊的等腰三角形,則∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割線,且△ABD是等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案