【題目】按下面擺好的方式,并使用同一種圖形,只通過平移方式就能進(jìn)行平面鑲嵌(即平面密鋪)的有_______(寫出所有正確答案的序號).
【答案】②③.
【解析】
根據(jù)一種圖形平面鑲嵌的條件,即能整除360°的多邊形,而且只通過平移就能進(jìn)行平面鑲嵌,得出每個內(nèi)角必須是90°,分別分析即可.
解:根據(jù)一種圖形平面鑲嵌的條件,即能整除360°的多邊形,而且只通過平移就能進(jìn)行平面鑲嵌,
∴①正三角形雖然能平面鑲嵌但是需通過旋轉(zhuǎn)得出,故此選項錯誤;
②正方形,每個內(nèi)角等于90°,通過平移就能進(jìn)行平面鑲嵌,故此選項正確;
③矩形,每個內(nèi)角等于90°,通過平移就能進(jìn)行平面鑲嵌,故此選項正確;
④正五邊形,每個內(nèi)角等于108°,不能平面鑲嵌,故此選項錯誤.
故答案為:②③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上小山的兩側(cè)有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達(dá)C處,此時熱氣球上的人測得CB與AB成70°角,請你用測得的數(shù)據(jù)求A,B兩地的距離AB長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,且,分別以、AB、為邊向梯形外作正方形,其面積分別為、、,則、、之間數(shù)量的關(guān)系是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,對角線,交于點,為的中點,點在的延長線上,且.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)線段和之間滿足什么條件時,四邊形是矩形?并說明理由;
(3)當(dāng)線段和之間滿足什么條件時,四邊形是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點M,
(1)求正比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)求ΔMOP的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的半圓O交BC于點E,DE⊥AB,垂足為D.
(1)求證:點E是BC的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)如果⊙O的直徑為9,cosB= , 求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于點H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點E為正方形ABCD邊BC上的一點,點G為BC延長線一點,連接AE,過點E作AE⊥EF,且AE=EF,連接CF.
(1)如圖1,求證:∠FCG=45°,
(2)如圖2,過點D作DH//EF交AB于點H,連接HE,求證:;
(3)如圖3,連接AF、DF,若AF交CD于點M,DM=2,BH=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是潛望鏡工作原理示意圖,陰影部分是平行放置在潛望鏡里的兩面鏡子.已知光線經(jīng)過鏡子反射時,有∠1=∠2,∠3=∠4,請解釋進(jìn)入潛望鏡的光線l為什么和離開潛望鏡的光線m是平行的?
請把下列解題過程補充完整.
理由:
因為AB∥CD,
根據(jù)“ ”,
所以∠2=∠3.
因為∠1=∠2,∠3=∠4,
所以∠1=∠2=∠3=∠4,
所以180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,
即: .
根據(jù)“ ”,
所以l∥m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com