【題目】如圖,在中,,是過點的直線,,于點;

1)若的同側(cè)(如圖所示)且.求證:;

2)若的兩側(cè)(如圖所示),且,其他條件不變,仍垂直嗎?若是請給出證明;若不是,請說明理由.

【答案】(1)見解析;(2)見解析.

【解析】

1)由已知條件,證明ABD≌△CAE,再利用角與角之間的關系求證∠BAD+CAE=90°,即可證明ABAC
2)同(1),先證ABD≌△CAE,再利用角與角之間的關系求證∠BAD+CAE=90°,即可證明ABAC

1)證明:∵BDDE,CEDE

∴∠ADB=ABC=90,

RtABD和RtCAE中,∵,

RtABDRtCAE

∴∠DAB=ECA,∠DBA=ACE

∵∠DAB+DBA=90,∠EAC+ACE=90,

∴∠BAD+CAE=90

BAC=180-(BAD+CAE)=90

ABAC

2ABAC.理由如下:

同(1)一樣可證得RtABD=RtACE

∴∠DAB=ECA,∠DBA=EAC,

∵∠CAE+ECA=90°,

∴∠CAE+BAD=90,即∠BAC=90°,

ABAC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點O,以O為圓心、OB為半徑作圓,且⊙O過A點. 如圖①,若⊙O的半徑為5,求線段OC的長;
如圖②,過點A作AD∥BC交⊙O于點D,連接BD,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,平分,

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為宣傳節(jié)約用水,小明隨機調(diào)查了某小區(qū)部分家庭5月份的用水情況,并將收集的數(shù)據(jù)整理成如圖所示的統(tǒng)計圖.

(1)小明一共調(diào)查了多少戶家庭?

(2)求所調(diào)查家庭5月份用水量的眾數(shù)、平均數(shù).

(3)若該小區(qū)有400戶居民,請你估計這個小區(qū)5月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,AC=BC,D是AB上的一點,AE⊥CD于點E,BF⊥CD于點F,若CE=BF,AE=EF+BF.試判斷AC與BC的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲同學手中藏有三張分別標有數(shù)字 、 、1的卡片,乙同學手中藏有三張分別標有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學七、八年級各選派10名選手參加學校舉辦的愛我荊門知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為ab

隊別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

七年級

6.7

m

3.41

90%

n

八年級

7.1

7.5

1.69

80%

10%

1)請依據(jù)圖表中的數(shù)據(jù),求ab的值;

2)直接寫出表中的mn的值;

3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,BC=2,點P、E、F分別為邊BC、AB、AC上的任意點,則PE+PF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的特異線,稱這個三角形為特異三角形.

(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點D,交BC于點E.求證:AE是△ABC的一條特異線.
(2)如圖2,已知△ABC是特異三角形,且∠A=30°,∠B為鈍角,求出所有可能的∠B的度數(shù).
(3)如圖3,△ABC是一個腰長為2的等腰銳角三角形,且它是特異三角形,若它的頂角度數(shù)為整數(shù),請求出其特異線的長度;若它的頂角度數(shù)不是整數(shù),請直接寫出頂角度數(shù).

查看答案和解析>>

同步練習冊答案