【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
【答案】(1)∵x2+x+c-a=0有兩個相等的實數(shù)根,
∴△=()2-4×(c-a)=0,
整理得a+b-2c="0" ①,
又∵3cx+2b=2a的根為x=0,
∴a="b" ②,
把②代入①得a=c,
∴a=b=c,
∴△ABC為等邊三角形;
(2)a,b是方程x2+mx-3m=0的兩個根,
∴方程x2+mx-3m=0有兩個相等的實數(shù)根
∴△=m2-4×(-3m)=0,
即m2+12m=0,
∴m1=0,m2=-12.
當m=0時,原方程的解為x=0(不符合題意,舍去),
∴m=-12.
【解析】
(1)因為方程有兩個相等的實數(shù)根,即△=0,由△=0可以得到一關于a,c的方程,再結合方程3cx+2b=2a的根為x=0,代入即可得到一關于a,b的方程,聯(lián)立即可求出a,b,c的關系.
(2)根據(1)中求出a,b的值,可以關于m的方程,解方程即可求出m.
解:∵有兩個相等的5t實數(shù)根,
∴,
整理得①,
又∵的根為,
∴②,
把②代入①得,
∴,
∴為等邊三角形;
,是方程的兩個根,
∴方程有兩個相等的實數(shù)根
∴,
即
∴,.
當時,原方程的解為(不符合題意,舍去),
∴.
科目:初中數(shù)學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側面; B方法:剪4個側面和5個底面。
現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側面和底面的個數(shù);
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點D為x正半軸上一動點
(1)求A、B兩點的坐標
(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點F作CD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關系,并予以證明
(3)以AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的三個條件(請從其中選擇一個):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某種產品展開圖,高為3cm.
(1)求這個產品的體積.
(2)請為廠家設計一種包裝紙箱,使每箱能裝5件這種產品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。,求此長方體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,連接AC,以點A為圓心,適當長為半徑畫弧,交AB、AC于點M,N,分別以M,N為圓心,大于MN長的一半為半徑畫弧,兩弧交于點H,連結AH并延長交BC于點E,再分別以A、E為圓心,以大于AE長的一半為半徑畫弧,兩弧交于點P,Q,作直線PQ,分別交CD,AC,AB于點F,G,L,交CB的延長線于點K,連接GE,下列結論:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,是等腰直角三角形,其中,是邊上的一點,連接,過作交于,,且,連接并延長,交于點.若四邊形的面積為,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,李老師準備了四張背面看上去無差別的卡片A,B,C,D,每張卡片的正面標有字母a,b,c表示三條線段(如圖),把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機抽取一張卡片后不放回,再隨機抽取一張.
(1)用樹狀圖或者列表表示所有可能出現(xiàn)的結果;
(2)求抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com