【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)D為x正半軸上一動(dòng)點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動(dòng)點(diǎn),過點(diǎn)F作CD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
【答案】(1)A(0,2),B(-2,0);(2)AH+FD=AD,證明詳見解析; (3)∠DAO=60°,30°或150°.
【解析】試題分析: 根據(jù)所給式子求出的值,即可表示出的坐標(biāo).
在AD上取K使AH=AK,證明△AHF≌△AKF,得到即可說明它們之間的關(guān)系.
如圖,可直接寫出∠DAO的度數(shù).
試題解析:
(1)
(2)AH+FD=AD,
在AD上取K使AH=AK,
設(shè)∠HFO=α,
∵HF∥CD,∴∠CDO=∠ADC=α,
∴△AHF≌△AKF,
(3) 30°或150°.
提示:如圖所示:根據(jù)等腰三角形的性質(zhì)進(jìn)行計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:我們知道:點(diǎn)A.B在數(shù)軸上分別表示有理數(shù)a、b,A.B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A.B兩點(diǎn)之間的距離AB=|a-b|.所以式子|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點(diǎn)與表示有理數(shù)x的點(diǎn)之間的距離.
根據(jù)上述材料,解答下列問題:
(1)若|x3|=4,則x=______;
(2)式子|x3|=|x+1|,則x=______;
(3)若|x3|+|x+1|=9,借助數(shù)軸求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點(diǎn)C,且AB=BC,P是線段BC上異于兩端點(diǎn)的一點(diǎn),過點(diǎn)P的直線分別交l2、l1于點(diǎn)D. E(點(diǎn)A. E位于點(diǎn)B的兩側(cè)),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連結(jié)AD、BD,BD與AP相交于點(diǎn)F. 如圖2.
①當(dāng)=2時(shí),求證:AP⊥BD;
②當(dāng)=n(n>1)時(shí),設(shè)△DAP的面積為S1,△EPC的面積為S2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政府于2017年初投資了112萬元,建成40個(gè)公共自行車站點(diǎn)、配置720輛公共自行車正式啟用公共自行車租貸系統(tǒng):今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2019年將投資340.5萬元,新建120個(gè)公共自行車站點(diǎn)、配置2205輛公共自行車.
(1)每個(gè)站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬元?
(2)若2017年到2019年市政府配置公共自行車數(shù)量的年平均增長(zhǎng)率相同,請(qǐng)你求出2018年市政府配置公共自行車的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)D、E分別是△ABC兩邊AB、BC所在直線上的點(diǎn),∠BDE+∠ACB=180°,DE=AC,AD=2BD.
(1) 如圖1,當(dāng)點(diǎn)D、E分別在AB、CB的延長(zhǎng)線上時(shí),求證:BE=BD
(2) 如圖2,當(dāng)點(diǎn)D、E分別在AB、BC邊上時(shí),BE與BD存在怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司計(jì)劃購買A型和B型兩種貨車共8輛,其中每輛車的價(jià)格以及每輛車的運(yùn)載量如下表:
A型 | B型 | |
價(jià)格(萬元/臺(tái)) | m | n |
運(yùn)載量(噸/車) | 20 | 30 |
若購買A型貨車1輛,B型貨車3輛,共需67萬元;若購買A型貨車3輛,B型貨車2輛,共需75萬元.
(1)求m,n的值;
(2)若每輛A型貨車每月運(yùn)載量500噸,每輛B型貨車每月運(yùn)載量750噸,為確保這8輛車每月的運(yùn)載量總和不少于4750噸,且該公司購買A型和B型貨車的總費(fèi)用不超過124萬元.請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購車總費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 是⊙M 的直徑,BC 是⊙M 的切線,切點(diǎn)為 B,C 是 BC 上(除 B 點(diǎn)外)的任意一點(diǎn),連接 CM 交⊙M 于點(diǎn) G,過點(diǎn) C 作 DC⊥BC 交 BG 的 延長(zhǎng)線于點(diǎn) D,連接 AG 并延長(zhǎng)交 BC 于點(diǎn) E.
(1)求證:△ABE∽△BCD;
(2)若 MB=BE=1,求 CD 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是延長(zhǎng)線上的一點(diǎn),點(diǎn)是的中點(diǎn)。
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)。
①作的平分線. ②連接并延長(zhǎng)交于點(diǎn).
(2)猜想與證明:試猜想與有怎樣的關(guān)系,并說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com