下表給出了x與函數(shù)y=x2+bx+c的一些對(duì)應(yīng)值:
x0136
y50-45
(1)請(qǐng)根據(jù)表格求出y=x2+bx+c的解析式;
(2)寫(xiě)出拋物線y=x2+bx+c的對(duì)稱(chēng)軸與頂點(diǎn)坐標(biāo);
(3)求出y=x2+bx+c與x軸的交點(diǎn)坐標(biāo);
(4)畫(huà)出y=x2+bx+c的大致圖象,并結(jié)合圖象指出,當(dāng)y<0,x的取值范圍.
(1)根據(jù)題意得:
c=5
a+b+c=0
9a+3b+c=-4

解得:
a=1
b=-6
c=5

則函數(shù)的解析式是:y=x2-6x+5;

(2)對(duì)稱(chēng)軸是:x=
0+6
2
=3,
把x=3代入函數(shù)解析式得:y=9-18+5=-4,
則函數(shù)的頂點(diǎn)是(3,-4);

(3)在y=x2-6x+5中,
令y=0,解得:x=1或5.
則與x軸的交點(diǎn)坐標(biāo)是:(1,0)和(5,0);

(4)根據(jù)圖象可得:當(dāng)y<0時(shí),x的范圍是:1<x<5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示,根據(jù)圖中的數(shù)據(jù),
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)(-2,0)(1,0)(0,2)
(1)求二次函數(shù)的解析式;
(2)寫(xiě)出頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過(guò)點(diǎn)A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點(diǎn)D,求△ABD的面積;
(3)當(dāng)y<0,直接寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),直線y=kx+b與x軸交于點(diǎn)A(3,0),與y軸的正半軸交于點(diǎn)B,tan∠OAB=
3

(1)求這直線的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)B落到點(diǎn)C的位置,求以點(diǎn)C為頂點(diǎn)且經(jīng)過(guò)點(diǎn)A的拋物線的解析式;
(3)設(shè)(2)中的拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)D,與y軸的交點(diǎn)為E.試判斷△ODE是否與△OAB相似?如果認(rèn)為相似,請(qǐng)加以證明;如果認(rèn)為不相似,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,對(duì)稱(chēng)軸為直線x=4的拋物線y=ax2+2x與x軸相交于點(diǎn)B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過(guò)原點(diǎn)O,得到直線l.點(diǎn)P是l上一動(dòng)點(diǎn),當(dāng)△PAB的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).
(3)當(dāng)△PAB的周長(zhǎng)最小時(shí),在直線AB的上方是否存在一點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形與△POB相似?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.(規(guī)定:點(diǎn)Q的對(duì)應(yīng)頂點(diǎn)不為點(diǎn)O)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱(chēng)軸.
(1)求拋物線的解析式和對(duì)稱(chēng)軸;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC是以AC為斜邊的Rt△時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)過(guò)點(diǎn)A的直線與拋物線在第一象限的交點(diǎn)為N,當(dāng)△ACN的面積為
15
8
時(shí),求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙P的半徑為2,圓心P在拋物線y=
1
2
x2-2上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,ABCD,AD=BC=
17
,AB=5,CD=3,拋物線y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動(dòng)點(diǎn),它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(dāng)(2)中M點(diǎn)運(yùn)動(dòng)到使d取最大值時(shí),此時(shí)記點(diǎn)M為N,設(shè)線段AC與y軸交于點(diǎn)E,F(xiàn)為線段EC上一動(dòng)點(diǎn),求F到N點(diǎn)與到y(tǒng)軸的距離之和的最小值,并求此時(shí)F點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案