如圖,在平面直角坐標系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,ABCD,AD=BC=
17
,AB=5,CD=3,拋物線y=-x2+bx+c過A、B兩點.
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動點,它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(2)中M點運動到使d取最大值時,此時記點M為N,設(shè)線段AC與y軸交于點E,F(xiàn)為線段EC上一動點,求F到N點與到y(tǒng)軸的距離之和的最小值,并求此時F點的坐標.
(1)易得A(-1,0)B(4,0),
把x=-1,y=0;
x=4,y=0分別代入y=-x2+bx+c,
-1-b+c=0
-16+4b+c=0

解得
b=3
c=4
.(3分)

(2)設(shè)M點坐標為(a,-a2+3a+4),
d=|a|-a2+3a+4.
①當-1<a≤0時,d=-a2+2a+4=-(a-1)2+5,
所以,當a=0時,d取最大值,值為4;
②當0<a<4時,d=-a2+4a+4=-(a-2)2+8
所以,當a=2時,d取最大值,最大值為8;
綜合①、②得,d的最大值為8.
(不討論a的取值情況得出正確結(jié)果的得2分)

(3)N點的坐標為(2,6),
過A作y軸的平行線AH,過F作FG⊥y軸交AH于點Q,過F作FK⊥x軸于K,
∵∠CAB=45°,AC平分∠HAB,
∴FQ=FK
∴FN+FG=FN+FK-1,
所以,當N、F、K在一條直線上時,F(xiàn)N+FG=FN+FK-1最小,最小值為5.
易求直線AC的函數(shù)關(guān)系式為y=x+1,把x=2代入y=x+1得y=3,
所以F點的坐標為(2,3).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

對于任意兩個二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當|a1|=|a2|時,我們稱這兩個二次函數(shù)的圖象為全等拋物線.
現(xiàn)有△ABM,A(-1,0),B(1,0).記過三點的二次函數(shù)拋物線為“C□□□”(“□□□”中填寫相應(yīng)三個點的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請通過計算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點為頂點,畫出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當m,n滿足什么條件時,存在拋物線CABM根據(jù)以上的探究結(jié)果,判斷是否存在過平行四邊形中三個頂點且能與CABM全等的拋物線?若存在,請列出所有滿足條件的拋物線“C□□□”;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

下表給出了x與函數(shù)y=x2+bx+c的一些對應(yīng)值:
x0136
y50-45
(1)請根據(jù)表格求出y=x2+bx+c的解析式;
(2)寫出拋物線y=x2+bx+c的對稱軸與頂點坐標;
(3)求出y=x2+bx+c與x軸的交點坐標;
(4)畫出y=x2+bx+c的大致圖象,并結(jié)合圖象指出,當y<0,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=(x-3)(x+1)與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,點D為頂點.

(1)求點B及點D的坐標.
(2)連結(jié)BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標.
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{1,-4,1}的函數(shù)的圖象向下平移2個單位,得到一個新函數(shù)圖象,求這個新函數(shù)圖象的解析式;
(2)“特征數(shù)”是{0,-
3
3
3
}
的函數(shù)圖象與x、y軸分別交點C、D,“特征數(shù)”是{0,-
3
,
3
}
的函數(shù)圖象與x軸交于點E,點O是原點,判斷△ODC與△OED是否相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用長為6m的鋁合金型材做一個形狀如圖所示的矩形窗框,要使做成的窗框的透光面積最大,則該窗的長,寬應(yīng)分別做成(  )
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點A,與x軸交于B、C兩點(C在B的左邊).
(1)過A、O、B三點作⊙M,求⊙M的半徑;
(2)點P為弧OAB上的動點,當點P運動到何位置時△OPB的面積最大?求出此時點P的坐標及△OPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

徒駭河大橋是我市第一座特大型橋梁,大橋橋體造型新穎,氣勢恢宏,兩條拱肋如長虹臥波,極具時代氣息(如圖①).大橋為中承式懸索拱橋,大橋的主拱肋ACB是拋物線的一部分(如圖②),跨徑AB為100m,拱高OC為25m,拋物線頂點C到橋面的距離為17m.
(1)請建立適當?shù)淖鴺讼,求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)七月份汛期來臨,河水水位上漲,假設(shè)水位比AB所在直線高出1.96m,這時位于水面上的拱肋的跨徑是多少?在不計橋面厚度的情況,一條高出水面4.6m的游船是否能夠順利通過大橋?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知某種水果的批發(fā)單價與批發(fā)量的函數(shù)關(guān)系如圖1所示.
(1)請說明圖中①、②兩段函數(shù)圖象的實際意義;
(2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量m(kg)之間的函數(shù)關(guān)系式;在圖2的坐標系中畫出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果;
(3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價之間的函數(shù)關(guān)系如圖3所示,該經(jīng)銷商擬每日售出60kg以上該種水果,且當日零售價不變,請你幫助該經(jīng)銷商設(shè)計進貨和銷售的方案,使得當日獲得的利潤最大.

查看答案和解析>>

同步練習冊答案