【題目】如圖,四邊形ABCD⊙O的內(nèi)接四邊形,BC⊙O的直徑,OE⊥BCAB于點E,若BE=2AE,則∠ADC =_________°

【答案】150

【解析】

連接AC,證明△BOE∽△BAC,根據(jù)相似三角形的性質(zhì)得到x、r的關系,根據(jù)余弦的定義求出∠B,根據(jù)圓內(nèi)接四邊形的性質(zhì)計算,得到答案.

解:連接AC,

設⊙O的半徑為r,AE=a,則BE=2a,

BC是⊙O的直徑,

∴∠BAC=90°

OEBC,

∴∠BOE=90°

∴∠BOE=BAC,又∠B=B

∴△BOE∽△BAC,

,即,

整理得,r=x

cosB=,

∴∠B=30°,

∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠ADC=180°-B=150°

故答案為:150

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售10A型和20B型加濕器的利潤為2500元,銷售20A型和10B型加濕器的利潤為2000

(1)求每臺A型加濕器和B型加濕器的銷售利潤;

(2)該商店計劃一次購進兩種型號的加濕器共100臺,其中B型加濕器的進貨量不超過A型加濕器的2倍,設購進A型加濕器x臺.這100臺加濕器的銷售總利潤為y

①求y關于x的函數(shù)關系式;

②該商店應怎樣進貨才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺加濕器銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育行政部門為了解初中學生參加綜合實踐活動的情況,隨機抽取了本市初一、初二、初三年級各名學生進行了調(diào)查,調(diào)查結(jié)果如圖所示,請你根據(jù)圖中的信息回答問題.

1)在被調(diào)查的學生中,參加綜合實踐活動的有多少人,參加科技活動的有多少人;

2)如果本市有萬名初中學生,請你估計參加科技活動的學生約有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)校園詩歌大賽結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下

(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;

(2)賽前規(guī)定成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78,試判斷他能否獲獎并說明理由;

(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點,與軸交于兩點,為頂點,為拋物線上一動點(與點不重合)

求該拋物線的解析式;

當點在直線的下方運動時,求的面積的最大值;

該拋物線上是否存在點,使?若存在,求出所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=m,EBC邊上一點,沿AE翻折△ABE,點B落在點F處.

1)連接CF,若CF//AE,求EC的長(用含m的代數(shù)式表示);

2)若EC=,當點F落在矩形ABCD的邊上時,求m的值;

3)連接DF,在BC邊上是否存在兩個不同位置的點E,使得?若存在,直接寫出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖場計劃今年養(yǎng)殖無公害標準化龍蝦和鯉魚,由于受養(yǎng)殖水面的制約,這兩個品種的苗種的總投放量只有50噸.根據(jù)經(jīng)驗測算,這兩個品種的種苗每投放一噸的先期投資、養(yǎng)殖期間的投資以及產(chǎn)值如下表:(單位:千元/)

品種

先期投資

養(yǎng)殖期間投資

產(chǎn)值

鯉魚

9

3

30

龍蝦

4

10

20

養(yǎng)殖場受經(jīng)濟條件的影響,先期投資不超過360千元,養(yǎng)殖期間的投資不超過290千元.設鯉魚種苗的投放量為x噸.

(1)x的取值范圍;

(2)設這兩個品種產(chǎn)出后的總產(chǎn)值為y(千元),試寫出yx之間的函數(shù)關系式,并求出當x等于多少時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20203停課不停學期間,某校采用簡單隨機抽樣的方式調(diào)查本校學生參加第一天線上學習的時長,將收集到的數(shù)據(jù)制成不完整的頻數(shù)分布表和扇形圖,如下所示:

組別

學習時長(分鐘)

頻數(shù)(人)

1

x≤40

3

2

40x≤60

6

3

60x≤80

m

4

80x≤100

18

5

100x≤120

14

1)求m,n的值;

2)學校有學生2400人,學校決定安排老師給““線上學習時長x≤60分鐘范圍內(nèi)的學生打電話了解情況,請你根據(jù)樣本估計學校學生線上學習時長x≤60分鐘范圍內(nèi)的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖:

請你根據(jù)統(tǒng)計圖回答下列問題:

(1)喜歡乒乓球的學生所占的百分比是多少?并請補全條形統(tǒng)計圖;

(2)請你估計全校500名學生中最喜歡“排球”項目的有多少名?

(3)在扇形統(tǒng)計圖中,“籃球”部分所對應的圓心角是多少度?

(4)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

同步練習冊答案