【題目】如圖,四邊形內(nèi)一點滿足,,,交于點,交于點.
(1)的度數(shù)為__________.
(2)若四邊形是平行四邊形
①求證:;
②若,求的值.
【答案】(1);(2)①證明見解析;②4
【解析】
(1)根據(jù)等式的性質求得∠BED=∠CEA,然后利用SAS定理求得△BED≌△CEA,從而得到∠BDE=∠CAE,然后求得∠AFE+∠EAF=90°,問題得解;
(2)①結合平行四邊形和等腰直角三角形的性質求得,根據(jù)周角360°求得,然后利用邊角邊定理求得,,從而得到,,問題得解;
②由①求得,從而得到,從而求得,用AA定理證明,然后根據(jù)相似三角形的性質列比例式求解.
解:(1)∵
∴
∴∠BED=∠CEA
又∵,,
∴△BED≌△CEA
∴∠BDE=∠CAE
又∵∠CFD=∠AFE,∠AFE+∠EAF=90°
∴∠BDE+∠AFE=90°
即
故答案為:90°
(2)①∵四邊形是平行四邊形,
∴,,
∵是等腰直角三角形,
∴,∴,∴,
∴,
∵,
∴,
又,,
∴,∴;
∵,∴,
∵,,
∴,∴,
∴.
②∵,
∴,
∴,
∵,
∴,
∵,,
∴,
∴,
∵,,
∴,∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(-1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求證△BCD是直角三角形;
(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,Rt△ABC中,點D,E分別為直角邊AC,BC上的點,若滿足AD2+BE2=DE2,則稱DE為R△ABC的“完美分割線”.顯然,當DE為△ABC的中位線時,DE是△ABC的一條完美分割線.
(1)如圖1,AB=10,cosA=,AD=3,若DE為完美分割線,則BE的長是 .
(2)如圖2,對AC邊上的點D,在Rt△ABC中的斜邊AB上取點P,使得DP=DA,過點P畫PE⊥PD交BC于點E,連結DE,求證:DE是直角△ABC的完美分割線.
(3)如圖3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割線,點P是斜邊AB的中點,連結PD、PE,求cos∠PDE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中有格點△ABC(注:頂點在網(wǎng)格線交點處的三角形叫做格點三角形).只用沒有刻度的直尺,按如下要求畫圖,
(1)以點C為位似中心,在如圖中作△DEC∽ABC,且相似比為1:2;
(2)若點B為原點,點C(4,0),請在如圖中畫出平面直角坐標系,作出△ABC的外心,并直接寫出△ABC的外心的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學初三年級積極推進走班制教學.為了了解一段時間以來,“至善班”的學習效 果,年級組織了多次定時測試,現(xiàn)隨機選取甲、乙兩個“至善班”,從中各抽取名同學在某一次定時測試中的數(shù)學成績,其結果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的名同學的數(shù)學成績統(tǒng)計(滿分為 100 分)(單位:分)
“至善班”乙班的名同學的數(shù)學成績統(tǒng)計(滿分為 100 分)(單位:分)
整理數(shù)據(jù):(成績得分用表示)
分數(shù) 數(shù)量 班級 | |||||
甲班(人數(shù)) | 1 | 3 | 4 | 6 | 6 |
乙班(人數(shù)) | 1 | 1 | 8 | 6 | 4 |
分析數(shù)據(jù),并回答下列問題:
完成下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲班 | |||
乙班 |
在“至善班”甲班的扇形圖中, 成績在的扇形中,所對的圓心角的度數(shù)為 . 估計全部“至善班”的人中優(yōu)秀人數(shù)為 人.(分及以上為優(yōu)秀).
根據(jù)以上數(shù)據(jù),你認為“至善班” 班(填“甲”或“乙”)所選取做樣本 的同學的學習效果更好一些,你所做判斷的理由是:
①
②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】調查作業(yè):了解你所住小區(qū)家庭3月份用氣量情況.
小天、小東和小蕓三位同學住在同一小區(qū),該小區(qū)共有300戶家庭,每戶家庭人數(shù)在2—5之間,這300戶家庭的平均人數(shù)約為3.3.
小天、小東和小蕓各自對該小區(qū)家庭3月份用氣量情況進行了抽樣調查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2、表3,
表1抽樣調查小區(qū)4戶家庭3月份用氣量統(tǒng)計表(單位:)
家庭人數(shù) | 2 | 3 | 4 | 5 |
用氣量 | 14 | 19 | 21 | 26 |
表2抽樣調查小區(qū)15戶家庭3月份用氣量統(tǒng)計表(單位:)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 |
用氣量 | 10 | 11 | 15 | 13 | 14 | 15 | 17 | 17 | 18 | 18 | 18 | 18 | 18 | 20 | 22 |
表3抽樣調查小區(qū)15戶家庭3月份用氣量統(tǒng)計表(單位:)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 |
用氣量 | 10 | 12 | 13 | 14 | 17 | 17 | 18 | 20 | 20 | 21 | 22 | 26 | 31 | 28 | 31 |
根據(jù)以上材料回答問題:
(1)小天、小東和小蕓三人中,哪一位同學抽樣調查的數(shù)據(jù)能較好地反應出該小區(qū)家庭3月份用氣量情況?請簡要說明其他兩位同學抽樣調查的不足之處;
(2)小東將表2中的數(shù)據(jù)按用氣量大小分為三類;
①節(jié)約型:;
②居中型:;
③偏高型:;并繪制成如下扇形統(tǒng)計圖,請幫助他將扇形圖補充完整;
(3)小蕓算出表3中3月份平均每人的用量為,請估計該小區(qū)3月份的總用氣量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“煙花三月下?lián)P州”-----揚州人杰地靈,是著名的旅游城市,繼獲“聯(lián)合國人居獎”后,2019年又獲“世界美食之都”的殊榮.“五一”長假期間,某餐飲企業(yè)為歡迎外地游客,推出了一個就餐酬賓活動:一只不透明的袋子中裝有分別標著A、B、C、D字母的四個球,分別對應揚州的四種美食:A--揚州醬菜、 B--揚州包子、C--揚州老鵝、D--揚州炒飯,這些球除字母標記外其余都相同.游客消費可參與活動:單筆消費滿600元可一次摸出一個球獲取一種相應的美食,單筆消費滿1000元可一次摸出兩個球獲取兩種相應的美食,單筆消費滿1300元可一次摸出三個球獲取三種相應的美食,單筆消費滿1500元可一次獲取四項獎品.某游客消費了1200元,參加這個活動,請用樹狀圖或列表的方式列出他獲得美食的所有可能結果,并求出獲得揚州包子和揚州老鵝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)y(x>0)的圖象與直線y=2x+1交于點A(1,m)
(1)求k,m的值;
(2)已知點P(0,n)(n>0),過點P作平行于x軸的直線,交直線y=2x+1于點B,交函數(shù)y(x>0)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.
①當n=1時,寫出線段BC上的整點的坐標;
②若y(x>0)的圖象在點A,C之間的部分與線段AB,BC所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,直接寫出n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com