【題目】某中學(xué)初三年級積極推進(jìn)走班制教學(xué).為了了解一段時間以來,“至善班”的學(xué)習(xí)效 果,年級組織了多次定時測試,現(xiàn)隨機(jī)選取甲、乙兩個“至善班”,從中各抽取名同學(xué)在某一次定時測試中的數(shù)學(xué)成績,其結(jié)果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為 100 分)(單位:分)
“至善班”乙班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為 100 分)(單位:分)
整理數(shù)據(jù):(成績得分用表示)
分?jǐn)?shù) 數(shù)量 班級 | |||||
甲班(人數(shù)) | 1 | 3 | 4 | 6 | 6 |
乙班(人數(shù)) | 1 | 1 | 8 | 6 | 4 |
分析數(shù)據(jù),并回答下列問題:
完成下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲班 | |||
乙班 |
在“至善班”甲班的扇形圖中, 成績在的扇形中,所對的圓心角的度數(shù)為 . 估計全部“至善班”的人中優(yōu)秀人數(shù)為 人.(分及以上為優(yōu)秀).
根據(jù)以上數(shù)據(jù),你認(rèn)為“至善班” 班(填“甲”或“乙”)所選取做樣本 的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:
①
②
【答案】(2);(2);(3)甲,理由詳見解析
【解析】
(1)根據(jù)眾數(shù),中位數(shù)的定義即可解決問題.
(2)根據(jù)圓心角=360°×百分比,計算即可,利用樣本估計總體的思想解決問題.
(3)根據(jù)優(yōu)秀率,中位數(shù),平均數(shù)的大小即可判斷.答案不唯一,合理即可.
(1)將甲班成績重新整理如下:
56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96,
其中96出現(xiàn)次數(shù)做多,
∴眾數(shù)a=96(分),
將乙班成績重新整理如下:
54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100,
其中中位數(shù)b==79(分),
故答案為:96,79;
(2)成績在70≤x<80的扇形中,所對的圓心角的度數(shù)為360°×=72°,
估計全部“至善班”的1600人中優(yōu)秀人數(shù)為1600×=880(人).
故答案為:72°;880
(3)甲所選取做樣本的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:甲的優(yōu)秀率高,甲的中位數(shù)比乙的中位數(shù)大,
故答案為:甲,甲的優(yōu)秀率高,甲的中位數(shù)比乙的中位數(shù)大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=13,BC=10,點(diǎn)M是AC邊上任意一點(diǎn),連接MB,以MB、MC為鄰邊作平行四邊形MCNB,連接MN,則MN的最小值是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,P為半圓上的一個動點(diǎn)(不含端點(diǎn)),以OP、OB為一組鄰邊作POBQ,連接OQ、AP,設(shè)OQ、AP的中點(diǎn)分別為M、N,連接PM、ON.
(1)試判斷四邊形OMPN的形狀,并說明理由.
(2)若點(diǎn)P從點(diǎn)B出發(fā),以每秒15°的速度,繞點(diǎn)O在半圓上逆時針方向運(yùn)動,設(shè)運(yùn)動時間為ts.
①試求:當(dāng)t為何值時,四邊形OMPN的面積取得最大值?并判斷此時直線PQ與半圓O的位置關(guān)系(需說明理由);
②是否存在這樣的t,使得點(diǎn)Q落在半圓O內(nèi)?若存在,請直接寫出t的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°.AC=8,BC=3,點(diǎn)D是BC邊上動點(diǎn),連接AD交以CD為直徑的圓于點(diǎn)E,則線段BE長度的最小值為( )
A.1B.C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)一點(diǎn)滿足,,,交于點(diǎn),交于點(diǎn).
(1)的度數(shù)為__________.
(2)若四邊形是平行四邊形
①求證:;
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“某市為處理污水,需要鋪設(shè)一條長為4000米的管道,為了盡量減少施工對交通所造成的影響,實(shí)際施工時×××××.設(shè)原計劃每天鋪設(shè)管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應(yīng)補(bǔ)為( )
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前20天完成任務(wù)
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前20天完成任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的解析式為,將拋物線沿軸翻折得到拋物線,拋物線、的頂點(diǎn)分別為、,點(diǎn)為拋物線上一點(diǎn),橫坐標(biāo)為,過點(diǎn)作軸的平行線交拋物線于點(diǎn).
(1)當(dāng)時;
①請直接寫出拋物線的解析式;
②當(dāng)時,求的值;
(2)當(dāng)時.
①為拋物線上一動點(diǎn),當(dāng)為等腰直角三角形時,求的值;
②以為邊向左作正方形,設(shè)橫坐標(biāo)為整數(shù)的點(diǎn)稱為“夢想點(diǎn)”,當(dāng)正方形的內(nèi)部(不包括邊上)有6個“夢想點(diǎn)”時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“凈揚(yáng)”水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費(fèi)用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)
(1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;
(2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;
(3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線與的一個交點(diǎn)記為,與的一個交點(diǎn)記為,點(diǎn)的橫坐標(biāo)是,點(diǎn)在第一象限內(nèi).
(1)求點(diǎn)的坐標(biāo)及的表達(dá)式;
(2)點(diǎn)是線段上的一個動點(diǎn),過點(diǎn)作軸的垂線,垂足為,在的右側(cè)作正方形.
①當(dāng)點(diǎn)的橫坐標(biāo)為時,直線恰好經(jīng)過正方形的頂點(diǎn),求此時的值;
②在點(diǎn)的運(yùn)動過程中,若直線與正方形始終沒有公共點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com