分析 由四邊形ABCD和四邊形CEFG是正方形,根據(jù)正方形的性質(zhì),即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,則可根據(jù)SAS證得①△BCG≌△DCE;然后延長BG交DE于點(diǎn)H,根據(jù)全等三角形的對應(yīng)角相等,求得∠CDE+∠DGH=90°,則可得②BH⊥DE;由△DGO與△DCE相似即可判定③錯(cuò)誤,證明△EFO∽△DGO,即可求得④正確;即可得出結(jié)論.
解答 解:①∵四邊形ABCD和四邊形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,CD∥EF,
∴∠BCG=∠DCE.
在△BCG和△DCE中,$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCG=∠DCE}&{\;}\\{CG=CE}&{\;}\end{array}\right.$,
∴△BCG≌△DCE(SAS),
故①正確;
②延長BG交DE于點(diǎn)H,如圖所示:
∵△BCG≌△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BGC=90°,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BH⊥DE;
∴BG⊥DE.
故②正確;
③∵四邊形GCEF是正方形,
∴GF∥CE,
∴$\frac{DG}{DC}=\frac{GO}{CE}$,
∴$\frac{DG}{GC}=\frac{GO}{CE}$錯(cuò)誤,③錯(cuò)誤;
④∵DC∥EF,
∴△DGO∽△EOF,
∴$\frac{{S}_{△DGO}}{{S}_{△EOF}}$=($\frac{a-b}$)2=$\frac{(a-b)^{2}}{^{2}}$,
∴$\frac{{S}_{△EOF}}{{S}_{△DGO}}$=($\frac{EF}{DG}$)2=($\frac{a-b}$)2=$\frac{^{2}}{(a-b)^{2}}$,④正確;
正確的有①②④;
故答案為:①②④.
點(diǎn)評 本題主要考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)及相似三角形的判定和性質(zhì),綜合性較強(qiáng),掌握三角形全等、相似的判定和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 旋轉(zhuǎn)一定會(huì)改變圖形的形狀和大小 | |
B. | 兩條直線被第三條直線所截,同位角相等 | |
C. | 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直 | |
D. | 相等的角是對頂角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com