【題目】如圖,一次函數(shù)ykx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),且與x軸交于點(diǎn)C,與y軸交于點(diǎn)DA點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是3.

(1)求一次函數(shù)的表達(dá)式;

(2)求△AOB的面積;

(3)寫出不等式kx+b>﹣的解集.

【答案】(1) y=﹣x1;(2)△AOB的面積為(3) x<﹣40x3.

【解析】

1)先根據(jù)A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是3,求出A,B,再把A,B的值代入解析式即可解答

2)先求出C的坐標(biāo),利用三角形的面積公式即可解答

3)一次函數(shù)大于反比例函數(shù)即一次函數(shù)的圖象在反比例函數(shù)的圖象的上邊時(shí),對應(yīng)的x的取值范圍;

(1)∵一次函數(shù)ykx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),

且與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是3,

解得:x=﹣4,

y=﹣=﹣4,

B(43),A(3,﹣4),

A,B點(diǎn)代入ykx+b得:

解得:,

故直線解析式為:y=﹣x1

(2)y=﹣x1,當(dāng)y0時(shí),x=﹣1,

C點(diǎn)坐標(biāo)為:(1,0),

AOB的面積為:×1×3+×1×4

(3)不等式kx+b>﹣的解集為:x<﹣40x3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,O是對角線AC的中點(diǎn).將ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°.旋轉(zhuǎn)后的四邊形為A'BCD',點(diǎn)A,C,DO的對應(yīng)點(diǎn)分別為A′,C',D',O’,若AB8,BC10,則線段CO’的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線過點(diǎn)(1,0)和點(diǎn)(0,-3),且頂點(diǎn)在第三象限,設(shè)mabc,則m的取值范圍是(

A.6m0B.6m<-3C.3m0D.3m<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC6cm.點(diǎn)P、QBC邊上兩個(gè)動(dòng)點(diǎn)(點(diǎn)Q在點(diǎn)P右邊),PQ2cm,點(diǎn)P從點(diǎn)C出發(fā),沿CB向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.5s后點(diǎn)Q到達(dá)點(diǎn)B,點(diǎn)PQ停止運(yùn)動(dòng),過點(diǎn)QQDBCAB于點(diǎn)D,連接AP,設(shè)ACPBQD的面積和為S(cm),St的函數(shù)圖像如圖2所示.

(1)1BC cm,點(diǎn)P運(yùn)動(dòng)的速度為 cm/s;

(2)t為何值時(shí),面積和S最小,并求出最小值;

(3)連接PD,以點(diǎn)P為圓心線段PD的長為半徑作⊙P,當(dāng)⊙P的邊相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,直線MN⊙OAB兩點(diǎn),AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

1)求證:DE⊙O的切線;

2)若DE=6cmAE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在四邊形ABCD中,AB=AD=6,ABBC,ADCD,BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2BCD= °,cosMCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AC4,BC3,點(diǎn)DAB邊上一點(diǎn)(不與A、B重合),若過點(diǎn)D的直線截得的三角形與ABC相似,并且平分ABC的周長,則AD的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于,兩點(diǎn),頂點(diǎn)在第一象限,點(diǎn)在該拋物線上.

1)若點(diǎn)坐標(biāo)為.

①求的函數(shù)關(guān)系式;

②已知兩點(diǎn),,當(dāng)拋物線與線段沒有交點(diǎn)時(shí),求的取值范圍;

2)若點(diǎn)在該拋物線的曲線段上(不與點(diǎn),重合),直線軸于點(diǎn),過點(diǎn)作軸于點(diǎn),連接,.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC的延長線于點(diǎn)F,以EC、CF為鄰邊作ECFG.

(1)如圖1,證明ECFG為菱形;

(2)如圖2,若∠ABC=120°,連接BG、CG,并求出∠BDG的度數(shù):

(3)如圖3,若∠ABC=90°,AB=6,AD=8,MEF的中點(diǎn),求DM的長.

查看答案和解析>>

同步練習(xí)冊答案