【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
【答案】(1)∠BAD=135°;(2)四邊形ABCD的面積 2+
【解析】試題分析:(1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可證△ACD是直角三角形,于是有∠CAD=90°,從而易求∠BAD.
(2)連接AC,則可以計算△ABC的面積,根據(jù)AB、BC可以計算AC的長,根據(jù)AC,AD,CD可以判定△ACD為直角三角形,根據(jù)AD,CD可以計算△ACD的面積,四邊形ABCD的面積為△ABC和△ACD面積之和.
試題解析:
(1)∵∠B=90°,AB=BC=2,
∴AC= =2 ,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
故∠DAB的度數(shù)為135°.
(2)連接AC,如圖所示:
在直角△ABC中,AC為斜邊,且AB=BC=2,則AC=,
∵AD=1,CD=3,
∴AC2+CD2=AC2,
即△ACD為直角三角形,且∠ADC=90°,
四邊形ABCD的面積=S△ABC+S△ACD=AB×BC+AD×AC=2+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“如果二次函數(shù)的圖象與x軸有兩個公共點,那么一元二次方程有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程的兩根,且a<b,則a、b、m、n的大小關(guān)系是【 】
A. m<a<b<n B. a<m<n<b C. a<m<b<n D. m<a<n<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為感受老一輩紅軍艱難曲折的光輝歷程,某校初一年級學(xué)生舉行重走紅色路線活動,活動當(dāng)天共租5輛大客車,每輛車有座位60個,若該校初一年級的男生比女生多20人,而剛好每人都有座位,則該初一年級有男、女生各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=AC,若□ABCD的周長為38 cm,△ABC的周長比□ABCD的周長少10 cm,求□ABCD的一組鄰邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, , , 三邊的長分別為, , ,求這個三角形的面積.
小明同學(xué)在解答這道題時,先建立了一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中
畫出格點△ABC中,(即△ABC三個頂點都在小正方形的頂點處),如圖1所示,這樣不需要△ABC高,借用網(wǎng)格就能計算出它的面積.
(1)△ABC的面積為 ;
(2)如果△MNP三邊的長分別為, , ,請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為1)畫出相應(yīng)的格點△MNP,并直接寫出△MNP的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4 800元.已知甲、乙兩車單獨運完此垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列分解因式正確的是( )
A.x3﹣x=x(x2﹣1)
B.m2+m﹣6=(m+3)(m﹣2)
C.(a+4)(a﹣4)=a2﹣16
D.x2+y2=(x+y)(x﹣y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,與y軸交于點B.
(1)求拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標。
(3)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com