【題目】已知如圖1,在中,,,點是的中點,點是邊上一點,直線垂直于直線于點,交于點.
(1)求證:.
(2)如圖2,直線垂直于直線,垂足為點,交的延長線于點,求證:.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)首先根據點D是AB中點,∠ACB=90°,可得出∠ACD=∠BCD=45°,判斷出△AEC≌△CGB,即可得出AE=CG;
(2)根據垂直的定義得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根據AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,進而證明出BE=CM.
(1)∵點D是AB中點,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.
又∵BF⊥CE,∴∠CBG+∠BCF=90°.
又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.
在△AEC和△CGB中,∵,∴△AEC≌△CGB(ASA),∴AE=CG;
(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.
在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.
(1)用含t的代數式表示線段DC的長;
(2)當點Q與點C重合時,求t的值;
(3)設△PDQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數關系式;
(4)當線段PQ的垂直平分線經過△ABC一邊中點時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4, AD=5,則DC的長 ( ).
A. 7 B. C. D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)符合一次函數y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個二次函數的圖象,三位同學分別說出了它的一些特點:
甲:對稱軸為直線x=4
乙:與x軸兩個交點的橫坐標都是整數.
丙:與y軸交點的縱坐標也是整數,且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數解析式__________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,E,F,G,H分別是邊AB,BC,CD,DA的中點,ABCD的邊滿足條件:_____時(填上一個你認為正確的條件),四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若△ABC的三邊長分別為m﹣2,2m+1,8.
(1)試確定m的取值范圍;
(2)若△ABC的三邊均為整數,求△ABC的周長;
(3)若△ABC為等腰三角形,試確定另外兩邊的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已等腰Rt△ABC中,∠BAC=90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
(1)如圖,求證:△ACE≌△ABD;
(2)點D運動時,∠BCE的度數是否發(fā)生變化?若不變化,求它的度數;若變化,說明理由;
(3)若AC=,當CD=1時,請直接寫出DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com