【題目】如圖所示,△A′B′C′是△ABC經(jīng)過平移得到的,A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一點P(x1 , y1)平移后的對應(yīng)點為P′(x1+6,y1+4).

(1)請寫出三角形ABC平移的過程;
(2)分別寫出點A′,B′,C′的坐標(biāo);
(3)求△A′B′C′的面積.

【答案】
(1)

解:∵△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4),

∴平移后對應(yīng)點的橫坐標(biāo)加6,縱坐標(biāo)加4,

∴△ABC先向右平移6個單位,再向上平移4個單位得到△A′B′C′或△ABC先向上平移4個單位,再向右平移6個單位得到△A′B′C′;


(2)

由(1)可知,A′(2,3),B′(1,0),C′(5,1)


(3)

如圖所示,SA′B′C′=3×4﹣ ×1×3﹣ ×1×4﹣ ×2×3=5.5


【解析】(1)根據(jù)點P平移后的坐標(biāo)即可得出結(jié)論;(2)根據(jù)(1)的平移過程即可得出結(jié)論;(3)利用矩形的面積減去三個頂點上三角形的面積即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x232互為相反數(shù),則x的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用計算器求sin20°+tan54°33′的結(jié)果等于(結(jié)果精確到0.01)( 。
A.2.25
B.1.55
C.1.73
D.1.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】16的平方根是(
A.2
B.4
C.﹣2或2
D.﹣4或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五·一”假期的某天,小明、小東兩人同時分別從家出發(fā)騎共享單車到奧林匹克公園,已知小明家到公園的路程為15km,小東家到公園的路程為12km,小明騎車的平均速度比小東快3.5km/h,結(jié)果兩人同時到達(dá)公園.求小東從家騎車到公園的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次三項式x2+px-6可以分解為(x+q)·(x-2),那么(p-q)2的值為(  )

A. 2 B. 3 C. 4 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在等邊三角形ABC中,點E在線段AB上,點D在CB的延長線上,且AE=BD,試確定線段DE與EC的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的底和腰長是方程x2-6x+5=0的根,則這個三角形的周長是()

A.3B.11C.315D.31115

查看答案和解析>>

同步練習(xí)冊答案