【題目】如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為( 。
A.2B.2C.4﹣2D.2﹣2
【答案】D
【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半,取BC的中點O,連接OP、OA,然后求出OP=CB=2,利用勾股定理列式求出OA,然后根據(jù)三角形的三邊關(guān)系可知當(dāng)O、P、A三點共線時,AP的長度最。
解:在正方形ABCD中,
∴AB=BC,∠BAE=∠ABC=90°,
在△ABE和△BCF中,
∵,
∴△ABE≌△BCF(SAS),
∴∠ABE=∠BCF,
∵∠ABE+∠CBP=90°
∴∠BCF+∠CBP=90°
∴∠BPC=90°
如圖,取BC的中點O,連接OP、OA,
則OP=BC=2,
在Rt△AOB中,OA=,
根據(jù)三角形的三邊關(guān)系,OP+AP≥OA,
∴當(dāng)O、P、A三點共線時,AP的長度最小,
AP的最小值=OA﹣OP=﹣2.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P為等邊△ABC形內(nèi)一點,且PA=3cm,PB=4 cm,PC=5 cm,則圖中△PBC的面積為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一張長方形紙片(其中AB∥CD),點E,F分別在邊AB,AD上.把這張長方形紙片沿著EF折疊,點A落在點G處,EG交CD于點H.若∠BEH=4∠AEF,則∠CHG的度數(shù)為( )
A.108°B.120°C.136°D.144°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD是對角線,△ABC是等邊三角形.線段CD繞點C順時針旋轉(zhuǎn)60°得到線段CE,連接AE.
(1)求證:AE=BD;
(2)若∠ADC=30°,AD=3,BD=4.求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點E,過點E作ED∥BC交AB于點D.
(1)求證:AEBC=BDAC;
(2)如果=3,=2,DE=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為______;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直弦AC于點E,且交⊙O于點D,F是BA延長線上一點,若∠CDB=∠BFD.
(1)求證:FD∥AC;
(2)試判斷FD與⊙O的位置關(guān)系,并簡要說明理由;
(3)若AB=10,AC=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com