精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y=ax2-4x+c(a≠0)與反比例函數y=的圖象相交于B點,且B點的橫坐標為3,拋物線與y軸交于點C(0,6),A是拋物線y=ax2-4x+c的頂點,P點是x軸上一動點,當PA+PB最小時,P點的坐標為_______

【答案】(,0)

【解析】

根據題意作出合適的輔助線,然后求出點B的坐標,從而可以求得二次函數解析式,然后求出點A的坐標,進而求得A的坐標,從而可以求得直線AB的函數解析式,進而求得與x軸的交點,從而可以解答本題

解:作點A關于x軸的對稱點A',連接AB,則ABx軸的交點即為所求,

∵拋物線y=ax2-4x+c(a0)與反比例函數y= 的圖象相交于點B,且B點的橫坐標為3,拋物線與y軸交于點C0,6),

∴點B3,3),

解得,

y=x2-4x+6=x-22+2

∴點A的坐標為(2,2),

∴點A'的坐標為(2,-2),

設過點A'(2,-2)和點B3,3)的直線解析式為y=mx+n

∴直線AB的函數解析式為y=5x-12,

y=0,0=5x-12x=,

故答案為:(

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系,,將點A向右平移6個單位長度,得到點B.

(1)直接寫出點B的坐標;

(2)若拋物線y=-x2+bx+c經過點A,B求拋物線的表達式;

(3)若拋物線y=-x2+bx+c的頂點在直線y=x+2上移動,當拋物線與線段AB有且只有一個公共點時,求拋物線頂點橫坐標的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.

(1)當a=﹣1時,求拋物線頂點D的坐標,OE等于多少;

(2)OE的長是否與a值有關,說明你的理由;

(3)設∠DEO=β,45°≤β≤60°,求a的取值范圍;

(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設P(m,n),直接寫出n關于m的函數解析式及自變量m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請直接寫出Sx之間的函數關系式(不要求寫出自變量x的取值范圍);

2)當x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系,,將點A向右平移6個單位長度,得到點B.

(1)直接寫出點B的坐標;

(2)若拋物線y=-x2+bx+c經過點A,B求拋物線的表達式;

(3)若拋物線y=-x2+bx+c的頂點在直線y=x+2上移動,當拋物線與線段AB有且只有一個公共點時,求拋物線頂點橫坐標的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側)與y軸交于C點 .

(1)求拋物線的解析式和A、B兩點的坐標;

(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,求M點的坐標 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,M為正方形ABCD內一點,點NAD邊上,且BMN=90°,MN2MB.EMN的中點,點PDE的中點,連接MP并延長到點F,使得PFPM,連接DF.

(1)依題意補全圖形;

(2)求證:DFBM

(3)連接AM,用等式表示線段PMAM的數量關系并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線過點A(,-3) B(3,0),過點A作直線AC//x軸,交y軸與點C.

(1)求拋物線的解析式;

(2)在拋物線上取一點P,過點P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點的三角形與△AOC相似,求出對應點P的坐標;

(3)拋物線上是否存在點Q,使得?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)用公式法解方程:5x2﹣4x﹣1=0

(2)x2+7x﹣3=0(用配方法解方程)

查看答案和解析>>

同步練習冊答案