【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,.以為一邊作等邊三角形,連接

1)若,判斷_______(填“,)

2)當(dāng),試判斷的形狀,并說(shuō)明理由;

3)探究:當(dāng)______時(shí),是等腰三角形.(請(qǐng)直接寫(xiě)出答案)

【答案】1=;(2是直角三角形,證明見(jiàn)詳解;(3、

【解析】

1)根據(jù)等邊三角形性質(zhì)得出,利用求出,所以BO,D三點(diǎn)共線(xiàn),即有;

2)首先根據(jù)已知條件可以證明,然后利用全等三角形的性質(zhì)可以求出的度數(shù),由此即可判定的形狀;

3)分三種情況討論,利用已知條件及等腰三角形的性質(zhì)即可求解.

解:(1)答:

證明是等邊三角形,

當(dāng),即時(shí),

,

即:BO,D三點(diǎn)共線(xiàn),

2是直角三角形.

是等邊三角形,

,

是等邊三角形,

,

,

,

,,

是直角三角形;

3)由(2)知,

,,

要使,需,

,

要使,需,

,

;

要使,需,

,

所以,當(dāng)、時(shí),是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是∠ABC的平分線(xiàn),EDBC,∠4=∠5,則EF也是∠AED的平分線(xiàn).完成下列推理過(guò)程:

證明:∵BD是∠ABC的平分線(xiàn)(已知)

∴∠1=∠2(角平分線(xiàn)定義)

EDBC(已知)

∴∠5=∠2   

∴∠1=∠5(等量代換)

∵∠4=∠5(已知)

EF      

∴∠3=∠1   

∴∠3=∠4(等量代換)

EF是∠AED的平分線(xiàn)(角平分線(xiàn)定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底角為72°,腰AB的垂直平分線(xiàn)交另一腰AC于點(diǎn)E,垂足為D,連接BE,則下列結(jié)論錯(cuò)誤的是(

A. ∠EBC36° B. BC = AE

C. 圖中有2個(gè)等腰三角形 D. DE平分∠AEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知EF//AD, 1=∠2 BAC70°.求∠AGD的度數(shù)(將以下過(guò)程填寫(xiě)完整)

解:∵EF//AD

∴∠2

又∵∠1=∠2

∴∠1=∠3

AB//

∴∠BAC 180°

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BCAC上,且DE∥AB,過(guò)點(diǎn)EEF⊥DE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過(guò)點(diǎn)A、C,并與y軸交于點(diǎn)E,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)A.

(1)點(diǎn)E的坐標(biāo)是
(2)求反比例函數(shù)的解析式;
(3)求當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,∠AOB、∠COD都是直角.

(1)試判斷∠AOC與∠BOD的大小關(guān)系,并說(shuō)明理由;

(2)若∠BOC=60°,求∠AOD的度數(shù);

(3)猜想∠AOD與∠BOC在數(shù)量上是相等,互余,還是互補(bǔ)的關(guān)系,并說(shuō)明理由;

(4)當(dāng)∠COD繞著點(diǎn)O旋轉(zhuǎn)到圖(2)所示位置時(shí),你在(3)中的猜想還成立嗎?請(qǐng)用你所學(xué)的知識(shí)加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為-3、1.

(1)寫(xiě)出線(xiàn)段AB的中點(diǎn)M所對(duì)應(yīng)的數(shù);

(2)若點(diǎn)PB出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為:

①用含的代數(shù)式表示點(diǎn)P所對(duì)應(yīng)的數(shù);

②當(dāng)BP=2AP時(shí),值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ABCD,EF分別交AB、CDG、F兩點(diǎn),射線(xiàn)FM平分∠EFD,將射線(xiàn)FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線(xiàn)GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

同步練習(xí)冊(cè)答案