【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,E為BC上一點,CE=5,F(xiàn)為DE的中點.若△CEF的周長為18,則OF的長為 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;
(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發(fā)現(xiàn)]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關系是 .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中計算正確的是( 。
A. (x+y)2=x2+y2 B. (3x)2=6x2
C. (x3)2=x6 D. a2+a2=a4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB的垂直平分線CP交AB于點P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點D,E,使其滿足AD=DC=CE=EB,對于以下甲、乙兩種作法:
甲:分別作∠ACP、∠BCP的平分線,分別交AB于D、E,則D、E即為所求;乙:分別作AC、BC的垂直平分線,分別交AB于D、E,則D、E兩點即為所求.下列說法正確的是( )
A. 甲、乙都正確 B. 甲、乙都錯誤
C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:
因為∠1=65°,∠2=65°,
所以∠1=∠2.
所以______________∥ ( ).
因為AB與DE相交,
所以∠1=∠4( ).
所以∠4=65°.
又因為∠3=115°,
所以∠3+∠4=180°.
所以 ∥ ( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com