【題目】如圖,在ABC中,CD是邊AB上的中線,B是銳角,且sinB=,tanA=,BC=2求邊AB的長(zhǎng)和cosCDB的值.

【答案】邊AB的長(zhǎng)為6,cosCDB=

【解析】整體分析

過(guò)點(diǎn)C作CEAB于點(diǎn)E,解Rt△BCE,求CE,BE,在Rt△ACE中,由CE,tanA的值求AE,則可求AB;在Rt△CDE中,求出DE,CD,由余弦的定義求cos∠CDB.

過(guò)點(diǎn)C作CEAB于點(diǎn)E,

在RtBCE中,BC=,sinB=,

CE=BC·sinB=×=2,BE===2,

在RtACE中,tanA=

AE===4,AB=AE+BE=4+2=6,

CD是邊AB上的中線,BD=AB=3,DE=BD﹣BE=1,

在RtCDE中,CD===,

cosCDB===

故邊AB的長(zhǎng)為6,cosCDB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)AAC垂直x軸于點(diǎn)C,連結(jié)BC.若ABC的面積為2

1)求k的值;

2x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,CE平分∠BCD,交直線AD于點(diǎn)E,若CD=6,AE=2,則tan∠ACE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在中線AD上,且點(diǎn)A′△ABC的重心,A′B′BC相交于點(diǎn)E,那么BECE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖形如圖所示,下列說(shuō)法正確的有(

快車追上慢車需6小時(shí);慢車比快車早出發(fā)2小時(shí);快車速度為46km/h;④慢車速度為46km/h; A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時(shí)

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)甲、乙兩家文具商店出售同樣的毛筆和宣紙.毛筆每支18元,宣紙每張2元.甲商店推出的優(yōu)惠方法為買一支毛筆送兩張宣紙;乙商店的優(yōu)惠方法為按總價(jià)的九折優(yōu)惠.小麗想購(gòu)買5支毛筆,宣紙x張(x≥5).

1)若到甲商店購(gòu)買,應(yīng)付______ 元(用代數(shù)式表示);

2)若到乙商店購(gòu)買,應(yīng)付______ 元(用代數(shù)式表示);

3)若小麗要買宣紙10張,應(yīng)選擇哪家文具商店?若買100張呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,ACBD交于點(diǎn)O,過(guò)點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、GF、H四點(diǎn),連接EG、GF、FH、HE。

1)如圖,試判斷四邊形EGFH的形狀,并說(shuō)明理由;

2)如圖,當(dāng)時(shí),試判斷四邊形EGFH的形狀,并說(shuō)明理由;

3)如圖,在(2)的條件下,當(dāng),時(shí),試判斷四邊形EGFH的形狀,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°AC=8,cosA=,DAB邊的中點(diǎn),EAC邊上一點(diǎn),聯(lián)結(jié)DE,過(guò)點(diǎn)DDFDEBC邊于點(diǎn)F,聯(lián)結(jié)EF

1)如圖1,當(dāng)DEAC時(shí),求EF的長(zhǎng);

2)如圖2,當(dāng)點(diǎn)EAC邊上移動(dòng)時(shí),∠DFE的正切值是否會(huì)發(fā)生變化,如果變化請(qǐng)說(shuō)出變化情況;如果保持不變,請(qǐng)求出∠DFE的正切值;

3)如圖3,聯(lián)結(jié)CDEF于點(diǎn)Q,當(dāng)CQF是等腰三角形時(shí),請(qǐng)直接寫出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n的“C運(yùn)算”:①當(dāng)n為奇數(shù)時(shí),結(jié)果為3n1;②當(dāng)n為偶數(shù)時(shí),結(jié)果為(其中k是使為奇數(shù)的正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行.例如,n66時(shí),其“C運(yùn)算”如下

n26,則第2019次“C運(yùn)算”的結(jié)果是

A. 40 B. 5 C. 4 D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案