【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k=2;(2)D(5,0)或(﹣5,0)或(,0)或D(,0).
【解析】試題分析:(1)首先根據(jù)反比例函數(shù)與正比例函數(shù)的圖象特征,可知A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則O為線段AB的中點(diǎn),故△BOC的面積等于△AOC的面積,都等于1,然后由反比例函數(shù)的比例系數(shù)k的幾何意義,可知△AOC的面積等于,從而求出k的值;
(2)先將與聯(lián)立成方程組,求出A、B兩點(diǎn)的坐標(biāo),然后分三種情況討論:①當(dāng)AD⊥AB時(shí),求出直線AD的關(guān)系式,令y=0,即可確定D點(diǎn)的坐標(biāo);②當(dāng)BD⊥AB時(shí),求出直線BD的關(guān)系式,令y=0,即可確定D點(diǎn)的坐標(biāo);③當(dāng)AD⊥BD時(shí),由O為線段AB的中點(diǎn),可得OD=AB=OA,然后利用勾股定理求出OA的值,即可求出D點(diǎn)的坐標(biāo).
試題解析:(1)∵反比例函數(shù)與正比例函數(shù)的圖象相交于A、B兩點(diǎn),∴A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,∴OA=OB,∴△BOC的面積=△AOC的面積=2÷2=1,又∵A是反比例函數(shù)圖象上的點(diǎn),且AC⊥x軸于點(diǎn)C,∴△AOC的面積=,∴,∵k>0,∴k=2.故這個(gè)反比例函數(shù)的解析式為;
(2)x軸上存在一點(diǎn)D,使△ABD為直角三角形.將與聯(lián)立成方程組得: ,解得: , ,∴A(1,2),B(﹣1,﹣2),
①當(dāng)AD⊥AB時(shí),如圖1,
設(shè)直線AD的關(guān)系式為,將A(1,2)代入上式得: ,∴直線AD的關(guān)系式為,令y=0得:x=5,∴D(5,0);
②當(dāng)BD⊥AB時(shí),如圖2,
設(shè)直線BD的關(guān)系式為,將B(﹣1,﹣2)代入上式得: ,∴直線AD的關(guān)系式為,令y=0得:x=﹣5,∴D(﹣5,0);
③當(dāng)AD⊥BD時(shí),如圖3,
∵O為線段AB的中點(diǎn),∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0),
根據(jù)對(duì)稱性,當(dāng)D為直角頂點(diǎn),且D在x軸負(fù)半軸時(shí),D(,0);
故x軸上存在一點(diǎn)D,使△ABD為直角三角形,點(diǎn)D的坐標(biāo)為(5,0)或(﹣5,0)或(,0)或D(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
我們給出如下定義:數(shù)軸上給定兩點(diǎn),以及一條線段,若線段的中點(diǎn)在線段上(點(diǎn)可以與點(diǎn)或重合),則稱點(diǎn)與點(diǎn)關(guān)于線段徑向?qū)ΨQ.下圖為點(diǎn)與點(diǎn)關(guān)于線段徑向?qū)ΨQ的示意圖.
解答下列問(wèn)題:
如圖1,在數(shù)軸上,點(diǎn)為原點(diǎn),點(diǎn)表示的數(shù)為-1,點(diǎn)表示的數(shù)為2.
(1)①點(diǎn),,分別表示的數(shù)為-3,,3,在,,三點(diǎn)中, 與點(diǎn)關(guān)于線段徑向?qū)ΨQ;
②點(diǎn)表示的數(shù)為,若點(diǎn)與點(diǎn)關(guān)于線段徑向?qū)ΨQ,則的取值范圍是 ;
(2)在數(shù)軸上,點(diǎn),,表示的數(shù)分別是-5,-4,-3,當(dāng)點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向正半軸方向移動(dòng)時(shí),線段同時(shí)以每秒3個(gè)單位長(zhǎng)度的速度向正半軸方向移動(dòng).設(shè)移動(dòng)的時(shí)間為()秒,問(wèn)為何值時(shí),線段上至少存在一點(diǎn)與點(diǎn)關(guān)于線段徑向?qū)ΨQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲船逆水,靜水速度為28海里/時(shí);乙船順?biāo)o水速度為12海里/時(shí),兩船相距60海里.已知水流速度為3海里/時(shí),兩船同時(shí)相向而行.
(1)兩船同時(shí)航行1小時(shí),求此時(shí)兩船之間的距離;
(2)再(1)的情況下,兩船再繼續(xù)航行1小時(shí),求此時(shí)兩船之間的距離;
(3)求兩船從開(kāi)始航行到兩船相距12海里,需要多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蝸牛從某點(diǎn)O開(kāi)始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬行的各段路程依次為(單位:厘米):.問(wèn):
(1)蝸牛最后是否回到出發(fā)點(diǎn)O?
(2)蝸牛離開(kāi)出發(fā)點(diǎn)O最遠(yuǎn)是多少厘米?
(3)在爬行過(guò)程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,則蝸?傻玫蕉嗌倭Vヂ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)過(guò)絕對(duì)值之后,我們知道:|5-2|表示 5 與 2 的差的絕對(duì)值,實(shí)際上也可理解為 5 與 2 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離:|5+2|表示 5 與-2 的差的絕對(duì)值,實(shí)際上也可理解為 5 與-2 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離. 試探究解決以下問(wèn)題:
⑴|x+6|可以理解為 與 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;
⑵找出所有符合條件的整數(shù) x,使|x+1|+|x-2|=3 成立;
⑶如圖,在一條筆直的高速公路旁邊依次有 A、B、C 三個(gè)城市,它們距高速公路起點(diǎn)的距離分別是 567km、689km、889km.現(xiàn)在需要在該公路旁建一個(gè)物流集散中心 P,請(qǐng)直接指出該物流集散中心 P 應(yīng)該建設(shè)在何處,才能使得 P 到三個(gè)城市的距離之和最小?這個(gè)最小距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問(wèn)題卷調(diào)查,調(diào)查結(jié)果分為“A非常了解”、“B了解”、“C基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次調(diào)查的市民有多少人?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該市約有市民950萬(wàn)人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市有多少萬(wàn)人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】701班小強(qiáng)買了張100元的深圳通乘車卡,如果他乘車的次數(shù)用表示,則記錄他每次乘車后的余額n (元)如下表:
(1)寫(xiě)出余額n與乘車的次數(shù)m的關(guān)系式.
(2)利用上述關(guān)系式計(jì)算小強(qiáng)乘了23次車還剩下多少元?
(3)小強(qiáng)最多能乘幾次車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B.圖②是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值是__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,且sinB=,tanA=,BC=2,求邊AB的長(zhǎng)和cos∠CDB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com