【題目】1)問題探究:如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFGAEAB,連接BEDG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關系和位置關系.并請說明理由.

2)理解應用:如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AEAB,AB10,將正方形AEFG繞點A在平面內(nèi)任意旋轉,當∠ABE15°,且點D、E、G三點在同一條直線上時,請直接寫出AE的長   ;

3)拓展應用:如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD4,AB4,AG4AE4,將矩形AEFG繞點A在平面內(nèi)任意旋轉,連接BDDE,點M,N分別是BD,DE的中點,連接MN,當點D、E、G三點在同一條直線上時,請直接寫出MN的長   

【答案】1BEDG,BE⊥DG,見解析;(255;(368

【解析】

1)由“SAS”可證△GAD≌△EAB,可得BEDG,∠ADG=∠ABE,由直角三角形的性質可得BEDG;

2)由“SAS”可證△GAD≌△EAB,可得BEDG,∠ADG=∠ABE15°,可得∠DEB90°,由直角三角形的性質可求解;

3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.

解:(1BEDG,BEDG,

理由如下:如圖1:延長BEADN,交DGH,

∵四邊形ABCD是正方形,四邊形AEFG是正方形,

AGAE,ABAD,∠GAE=∠DAB90°,

∴∠GAD=∠EAB,

∴△GAD≌△EABSAS),

BEDG,∠ADG=∠ABE,

∵∠ABE+ANB90°,

∴∠ADG+DNH90°,

∴∠DHN90°,

BEDG

2)如圖,當點G在線段DE上時,連接BD,

∵四邊形ABCD是正方形,四邊形AEFG是正方形,

AGAEABAD10,∠GAE=∠DAB90°,∠ADB45°=∠ABDBDAB10,GEAE,

∴∠GAD=∠EAB,

∴△GAD≌△EABSAS),

BEDG,∠ADG=∠ABE15°,

∴∠BDE45°﹣15°=30°,∠DBE45°+15°=60°,

∴∠DEB90°,

BEBD5DG,DEBE5,

GE55

AE55,

當點E在線段DG上時,

同理可求AE55,

故答案為:55;

3)如圖,若點G在線段DE上時,

AD4,AB4AG4,AE4,

DB8,GE8,∠DAB=∠GAE90°,

∴∠DAG=∠BAE

又∵

∴△AGD∽△AEB,

,∠DGA=∠AEB,

BEDG,

∵∠DGA=∠GAE+DEA,∠AEB=∠DEB+AED,

∴∠GAE=∠DEB90°,

DB2DE2+BE2

64×13=(DG+82+3DG2,

DG12DG=﹣16(舍去),

BE12,

∵點M,N分別是BD,DE的中點,

MNBE6;

如圖,當點E在線段DG上時,

同理可求:BE16,

∵點MN分別是BD,DE的中點,

MNBE8,

綜上所述:MN68

故答案為:68

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為檢測師生體溫,在校門安裝了某型號測溫門.如圖為該測溫門截面示意圖,已知測溫門AD的頂部A處距地面高為2.2m,為了解自己的有效測溫區(qū)間.身高1.6m的小聰做了如下實驗:當他在地面N處時測溫門開始顯示額頭溫度,此時在額頭B處測得A的仰角為18°;在地面M處時,測溫門停止顯示額頭溫度,此時在額頭C處測得A的仰角為60°.求小聰在地面的有效測溫區(qū)間MN的長度.(額頭到地面的距離以身高計,計算精確到0.1m,sin18°≈0.31cos18°≈0.95,tan18°≈0.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線(a0)的對稱軸為直線,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與軸交于點B

1)若直線經(jīng)過BC兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標;

3)設P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(8,1)B(0,3),反比例函數(shù)(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

(1)k的值;

(2)BMN面積的最大值;

(3)MAAB,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,∠A45°,連接BD,且BDAD,點E、點F分別是ABCD上的點,連接EFBD于點O,且EFCDBEDF1

1)求EF的長;

2)直接寫出ABCD的面積   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】無錫市靈山勝境公司廠生產(chǎn)一種新的大佛紀念品,每件紀念品制造成本為18元,試銷過程發(fā)現(xiàn),每月銷量萬件與銷售單價之間的關系可以近似地看作一次函數(shù)

寫出公司每月的利潤萬元與銷售單價之間函數(shù)解析式;

當銷售單價為多少元時,公司每月能夠獲得最大利潤?最大利潤是多少?

根據(jù)工商部門規(guī)定,這種紀念品的銷售單價不得高于32如果公司要獲得每月不低于350萬元的利潤,那么制造這種紀念品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MCN45°,點B在射線CM上,點A是射線CN上的一個動點(不與點C重合).點B關于CN的對稱點為點D,連接ABADCD,點F在直線BC上,且滿足AFAD.小明在探究圖形運動的過程中發(fā)現(xiàn)AFAB:始終成立.

如圖,當<∠BAC90°時.

求證:AFAB;

用等式表示線段之間的數(shù)量關系,并證明;

90°<∠BAC135°時,直接用等式表示線段CF、CDCA之間的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年級共有150名女生,為了解該校女生實心球成績(單位:米)和仰臥起坐(單位:個)的情況,從中隨機抽取30名女生進行測試,獲得了她們的相關成績,并對數(shù)據(jù)進行整理、描述和分析,下面給出了部分信息.

.實心球成績的頻數(shù)分布表如下:

分組

62≤66

66≤70

70≤74

74≤78

78≤82

82≤86

頻數(shù)

2

10

6

2

1

.實心球成績在70≤74.這組的是:

7.0

7.0

7.0

7.1

7.1

7.1

7.2

7.2

7.3

7.3

.一分鐘仰臥起坐成績?nèi)鐖D所示:

根據(jù)以上信息,回答下列問題:

1)①表中m的值為 ;

②抽取學生一分鐘仰臥起坐成績的中位數(shù)為 個;

2)若實心球成績達到72米及以上,成績記為優(yōu)秀,請估計全年級女生成績達到優(yōu)秀的人數(shù).

3)該年級某班體育委員將本班在這次抽樣測試中被抽取的8名女生的兩項成績的數(shù)據(jù)抄錄如下:

女生代碼

A

B

C

D

E

F

G

H

實心球

81

77

75

75

73

72

70

65

一分鐘仰臥起坐

*

42

47

*

47

52

*

49

其中有2名女生的一分鐘仰臥起坐成績未抄錄完整,當老師說這8名女生恰好有4人兩項測試成績都達到了優(yōu)秀,于是體育委員推測女生E的一分鐘仰臥起坐成績達到了優(yōu)秀,你同意體育委員的說法嗎?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線過點,頂點在第三象限,,是拋物線的對稱軸上的兩點,且,在直線左側以為邊作正方形,點恰好在拋物線上.

1)用含的式子表示

2)求證:點和點關于直線對稱;

3)判斷直線和直線是常數(shù),且)的交點是否在拋物線上,并說明理由.

查看答案和解析>>

同步練習冊答案