現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么他們各擲一次所確定的點(diǎn)P落在雙曲線y=
6
x
上的概率為( 。
A、
1
9
B、
2
3
C、
1
18
D、
1
6
分析:列舉出所有情況,看各擲一次所確定的點(diǎn)P落在雙曲線y=
6
x
上的情況數(shù)占所有情況數(shù)的多少即可.
解答:解:
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
共有36種情況,其中(1,6)(2,3)(3,2)(6,1)在雙曲線y=
6
x
上,所以概率是
1
9
,故選A.
點(diǎn)評:考查用列樹狀圖的方法解決概率問題;得到各擲一次所確定的點(diǎn)P落在雙曲線y=
6
x
上的情況數(shù)是解決本題的關(guān)鍵;用到的知識點(diǎn)為:概率等于所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(課改)現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知拋物線y=-x2+4x上的概率為(  )
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體骰子(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知直線y=2x上的概率為( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的正方體骰子(六個(gè)面上分別標(biāo)有數(shù)字1到6).小明擲A正方體朝上的數(shù)字x,小亮擲B正方體朝上的數(shù)字y,分別作點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),那么他們各擲一次所確定的點(diǎn)P(x,y)落在如圖所示的矩形內(nèi)(含邊界)的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體,立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6.用小莉擲A立方體朝上的數(shù)字為x,小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知拋物線y=-x2+4x上的概率為
1
12
1
12

查看答案和解析>>

同步練習(xí)冊答案