【題目】如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長線交于點(diǎn)E、與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),∠ADC的平分線交AB于點(diǎn)M,交AE于點(diǎn)N,連接DE
(1) 求證:BC=CE
(2) 若DM=2,求DE的長
【答案】(1)證明見解析;(2)DE=.
【解析】
(1)利用平行四邊形ABCD的性質(zhì)得出AD=BC,AD∥BC,進(jìn)一步證得△ADF≌△ECF,得出AD=CE,證得結(jié)論;
(2)連接FM,證得四邊形AMFD是菱形,得出AN=NF,求得M是AB的中點(diǎn),利用勾股定理求得AN,進(jìn)一步得出NE,進(jìn)一步利用勾股定理求得DE的長即可.
(1)證明:∵平行四邊形ABCD
∴AD=BC,AD//BC
∴∠DAF=∠CEF,∠ADF=∠ECF
∵點(diǎn)F為CD中點(diǎn)
∴DF=CF
∴△ADF≌△ECF(AAS)
∴AD=CE
∴BC=CE.
(2)如圖,連接FM,
∵DM平分∠ADF,AF平分∠DAB,AB∥DC,AD∥BC,
∴∠DAF=∠BAF=DFN,∠ADM=∠FDM=∠AMD,
∴AD=DF=AM,
∴四邊形AMFD是菱形,
∴AF⊥DM,DN=MN=DM=1,
又∵DF=FC,DC=AB=6,
∴AM=3,
∴AN=,
∴AF=2AN=4,
∵AF=EF,
∴NE=AE-AN=6,
∴DE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A,B,C三點(diǎn)對應(yīng)的數(shù)a,b,c滿足(a+40)2+|b+10|=0,B為線段AC的中點(diǎn).
(1)直接寫出A,B,C對應(yīng)的數(shù)a,b,c的值.
(2)如圖1,點(diǎn)D表示的數(shù)為10,點(diǎn)P,Q分別從A,D同時(shí)出發(fā)勻速相向運(yùn)動(dòng),點(diǎn)P的速度為6個(gè)單位/秒,點(diǎn)Q的速度為1個(gè)單位/秒.當(dāng)點(diǎn)P運(yùn)動(dòng)到C后迅速以原速返回到A又折返向C點(diǎn)運(yùn)動(dòng);點(diǎn)Q運(yùn)動(dòng)至B點(diǎn)后停止運(yùn)動(dòng),同時(shí)P點(diǎn)也停止運(yùn)動(dòng).求在此運(yùn)動(dòng)過程中P,Q兩點(diǎn)相遇點(diǎn)在數(shù)軸上對應(yīng)的數(shù).
(3)如圖2,M,N為A,C之間兩點(diǎn)(點(diǎn)M在N左邊,且它們不與A,C重合),E,F分別為AN,CM的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干根長度相同的火柴棒,用a根火柴棒,按如圖①擺放時(shí)可擺成m個(gè)正方形,用b根火柴棒,按如圖②擺放時(shí)可擺成2n個(gè)正方形.(m、n是正整數(shù))
(1)如圖①,當(dāng)m=4時(shí),a=______;如圖②,當(dāng)b=52時(shí),n=______;
(2)當(dāng)若干根長度相同的火柴棒,既可以擺成圖①的形狀,也可以擺成圖②的形狀時(shí),m與n之間有何數(shù)量關(guān)系,請你寫出來并說明理由;
(3)現(xiàn)有61根火柴棒,用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀.請你直接寫出一種擺放方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(jì)(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(jì)(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×6的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作△ABC的外接圓⊙O,則弧AC的長等于( 。
A. π B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F,與雙曲線y=﹣(x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn),直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,OD,使射線OC平分∠AOD.
(1)當(dāng)∠BOD=50°時(shí),∠COD= °;
(2)將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,當(dāng)三角板MON的一邊OM與射線OC重合時(shí),如圖2.
①在(1)的條件下,∠AON= °;
②若∠BOD=70°,求∠AON的度數(shù);
③若∠BOD=α,請直接寫出∠AON的度數(shù)(用含α的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com