【題目】如圖,拋物線y=﹣ x2+mx+n的圖象經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為直線x=1,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A,交x軸于點(diǎn)P,交拋物線于另一點(diǎn)B,點(diǎn)A、B位于點(diǎn)P的同側(cè).
(1)求拋物線的解析式;
(2)若PA:PB=3:1,求一次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)k>0時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)C,使得⊙C同時(shí)與x軸和直線AP都相切,如果存在,請(qǐng)求出點(diǎn)C的坐標(biāo),如果不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵拋物線的對(duì)稱軸為x=1,
∴﹣ =1,解得:m= .
將點(diǎn)A(2,3)代入y=﹣ x2+ x+n中,
3=﹣1+1+n,解得:n=3,
∴拋物線的解析式為y=﹣ x2+ x+3
(2)
解:∵P、A、B三點(diǎn)共線,PA:PB=3:1,且點(diǎn)A、B位于點(diǎn)P的同側(cè),
∴yA﹣yP=3yB﹣yP,
又∵點(diǎn)P為x軸上的點(diǎn),點(diǎn)A(2,3),
∴yB=1.
當(dāng)y=1時(shí),有﹣ x2+ x+3=1,
解得:x1=﹣2,x2=4(舍去),
∴點(diǎn)B的坐標(biāo)為(﹣2,1).
將點(diǎn)A(2,3)、B(﹣2,1)代入y=kx+b中,
,解得: ,
∴一次函數(shù)的解析式y(tǒng)= x+2
(3)
解:假設(shè)存在,設(shè)點(diǎn)C的坐標(biāo)為(1,r).
∵k>0,
∴直線AP的解析式為y= x+2.
當(dāng)y=0時(shí), x+2=0,
解得:x=﹣4,
∴點(diǎn)P的坐標(biāo)為(﹣4,0),
當(dāng)x=1時(shí),y= ,
∴點(diǎn)D的坐標(biāo)為(1, ).
令⊙與直線AP的切點(diǎn)為F,與x軸的切點(diǎn)為E,拋物線的對(duì)稱軸與直線AP的交點(diǎn)為D,連接CF,如圖所示.
∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,
∴∠DCF=∠EPF.
在Rt△CDF中,tan∠DCF=tan∠EPF= ,CD= ﹣r,
∴CD= CF= |r|= ﹣r,
解得:r=5 ﹣10或r=﹣5 ﹣10.
故當(dāng)k>0時(shí),拋物線的對(duì)稱軸上存在點(diǎn)C,使得⊙C同時(shí)與x軸和直線AP都相切,點(diǎn)C的坐標(biāo)為(1,5 ﹣10)或(1,﹣5 ﹣10)
【解析】(1)根據(jù)拋物線的對(duì)稱軸為x=1可求出m的值,再將點(diǎn)A的坐標(biāo)代入拋物線的解析式中求出n值,此題得解;(2)根據(jù)P、A、B三點(diǎn)共線以及PA:PB=3:1結(jié)合點(diǎn)A的坐標(biāo)即可得出點(diǎn)B的縱坐標(biāo),將其代入拋物線解析式中即可求出點(diǎn)B的坐標(biāo),再根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AP的解析式;(3)假設(shè)存在,設(shè)出點(diǎn)C的坐標(biāo),依照題意畫出圖形,根據(jù)角的計(jì)算找出∠DCF=∠EPF,再通過解直角三角形找出關(guān)于r的一元一次方程,解方程求出r值,將其代入點(diǎn)C的坐標(biāo)中即可得出結(jié)論.
【考點(diǎn)精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①若a<1,則(a﹣1) =﹣ ;②平行四邊形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;③ 的算術(shù)平方根是3;④如果方程ax2+2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a<1.其中正確的命題個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一玩具工廠用于生產(chǎn)的全部勞力為450個(gè)工時(shí),原料為400個(gè)單位.生產(chǎn)一個(gè)小熊要使用15個(gè)工時(shí)、20個(gè)單位的原料,售價(jià)為80元;生產(chǎn)一個(gè)小貓要使用10個(gè)工時(shí)、5個(gè)單位的原料,售價(jià)為45元.在勞力和原料的限制下合理安排生產(chǎn)小熊、小貓的個(gè)數(shù),可以使小熊和小貓的總售價(jià)盡可能高.請(qǐng)用你所學(xué)過的數(shù)學(xué)知識(shí)分析,總售價(jià)是否可能達(dá)到2200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)提示填空(8分)
如圖,EF∥AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
因?yàn)?/span>EF∥AD
所以∠2=____(____________________________)
又因?yàn)椤?/span>1=∠2
所以∠1=∠3(______________)
所以AB∥_____(_____________________________)
所以∠BAC+______=180°(_____________________)
因?yàn)椤?/span>BAC=80° 所以∠AGD=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,三角形ABC的位置如圖所示.
(1)請(qǐng)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)你能想辦法求出三角形ABC的面積嗎?
(3)將三角形ABC向右平移6個(gè)單位,再向上平移2個(gè)單位,請(qǐng)?jiān)趫D中作出平移后的三角形A′ B′ C′,并寫出三角形A′ B′ C′各點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中表示下面各點(diǎn):A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(xiàn)(5,7).
①A點(diǎn)到原點(diǎn)O的距離是________ .
②將點(diǎn)C向x軸的負(fù)方向平移6個(gè)單位它與點(diǎn)________重合.
③連接CE,則直線CE與y軸位置關(guān)系是________ .
④點(diǎn)F分別到x、y軸的距離分別是________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長(zhǎng)分別為45cm和60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求車架檔AD的長(zhǎng);
(2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: ,點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com