【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象的對(duì)稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號(hào)).

若圖象過(guò)點(diǎn)(﹣3,y1)、(2,y2),則y1y2;

ac0;

③2ab0;

b24ac0

【答案】①②③

【解析】

根據(jù)拋物線的對(duì)稱軸找到(﹣3,y1)的對(duì)稱點(diǎn)(1,y1),再與(2y2)根據(jù)函數(shù)的增減性進(jìn)行比較;由拋物線的開(kāi)口方向及與y軸的交點(diǎn)位置,即可得出a>0、c<0,進(jìn)而可得出ac<0,結(jié)論②正確;③由-=-1可得出2a-b=0,結(jié)論③正確;④由拋物線與x軸有兩個(gè)交點(diǎn),結(jié)合根的判別式可得出△=b2-4ac>0,結(jié)論④錯(cuò)誤.綜上即可得出結(jié)論.

:①∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-1,

∴(﹣3,y1)的對(duì)稱點(diǎn)是(1,y1),

∵拋物線的開(kāi)口向上,

∴對(duì)稱軸右側(cè)yx的增大而增大,

∴1<2,y1<y2,

正確;

∵拋物線的開(kāi)口向上,

a>0,

∵拋物線與y軸交于y軸的負(fù)半軸,

c<0,

ac<0,

正確;

∵拋物線的對(duì)稱軸是x=-1,

∴-=-1,

b=2a,

2a-b=0,

故③正確;

∵拋物線與x軸有兩個(gè)交點(diǎn),

△=b2-4ac>0,

故④錯(cuò)誤.

故答案為:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請(qǐng)你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長(zhǎng)AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)軸于點(diǎn),交軸于點(diǎn),且與反比例函數(shù)的圖象交于,兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過(guò)點(diǎn)軸于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),求四邊形的面積;

(3)當(dāng)時(shí),的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)的圖象,下列說(shuō)法正確的有____________.

;

④當(dāng)時(shí),yx的增大而增大;

⑤方程的根是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援災(zāi)區(qū),某校愛(ài)心活動(dòng)小組準(zhǔn)備用籌集的資金購(gòu)買A、B兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購(gòu)買B型學(xué)習(xí)用品的件數(shù)與用120元購(gòu)買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?

2)若購(gòu)買這批學(xué)習(xí)用品的費(fèi)用不超過(guò)28000元,則最多購(gòu)買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面從認(rèn)知、延伸、應(yīng)用三個(gè)層面來(lái)研究一種幾何模型.

1)如圖,已知點(diǎn)E是線段BC上一點(diǎn),若∠AED=∠B=∠C.求證 ABE∽△ECD

2)如圖,已知點(diǎn)E、F是線段BC上兩點(diǎn),AEDF交于點(diǎn)H,若∠AHD=∠B=∠C

求證:△ABE∽△FCD

3)如圖,⊙O是等邊△ABC的外接圓,點(diǎn)D上一點(diǎn),連接BD并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)E;連接CD并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F. 猜想BFBC、CE三線段的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).

(1)求圖象過(guò)點(diǎn)B的反比例函數(shù)的解析式;

(2)求圖象過(guò)點(diǎn)A,B的一次函數(shù)的解析式;

(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時(shí),請(qǐng)直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對(duì)花木的需求量逐年提高某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)與投資量成正比例關(guān)系,如圖1所示;種植花卉的利潤(rùn)與投資量成二次函數(shù)關(guān)系,如圖2所示注:利潤(rùn)與投資量的單位:萬(wàn)元

(1)分別求出利潤(rùn)關(guān)于投資量的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案