A. | y=$\frac{8}{x}$ | B. | y=$\frac{16}{x}$ | C. | y=-$\frac{16}{x}$ | D. | y=-$\frac{8}{x}$ |
分析 先連結(jié)OC,作CD⊥x軸于D,AE⊥x軸于E,利用反比例函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì),根據(jù)“AAS”可判定△COD≌△OAE,設A點坐標為(a,$\frac{8}{a}$),得出OD=AE=$\frac{8}{a}$,CD=OE=a,最后根據(jù)反比例函數(shù)圖象上點C的坐標特征確定函數(shù)解析式.
解答 解:如圖,連結(jié)OC,作CD⊥x軸于D,AE⊥x軸于E,
∵A點、B點是正比例函數(shù)圖象與雙曲線y=$\frac{8}{x}$的交點,
∴點A與點B關于原點對稱,
∴OA=OB,
∵△ABC為等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
∵在△COD和△OAE中,
$\left\{\begin{array}{l}{∠CDO=∠OEA}\\{∠DCO=∠EOA}\\{CO=OA}\end{array}\right.$,
∴△COD≌△OAE(AAS),
設A點坐標為(a,$\frac{8}{a}$),則OD=AE=$\frac{8}{a}$,CD=OE=a,
∴C點坐標為(-$\frac{8}{a}$,a),
∵-$\frac{8}{a}$•a=-8,
∴點C在反比例函數(shù)y=-$\frac{8}{x}$圖象上.
故選(D)
點評 本題主要考查了用待定系數(shù)法求反比例函數(shù)的解析式,解題時需要綜合運用反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質(zhì).判定三角形全等是解決問題的關鍵環(huán)節(jié).
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | a-2>b-2 | B. | -2a>-2b | C. | 2a>2b | D. | $\frac{a}{2}$>$\frac{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com