【題目】如圖,在平面直角坐標(biāo)系中,直線11:y=k1x+3分別與x軸,y軸交于A(﹣3,0),B兩點(diǎn),與直線l2:y=k2x交于點(diǎn)C,S△AOC=9.
(1)求tan∠BAO的值;
(2)求出直線l2的解析式;
(3)P為線段AC上一點(diǎn)(不含端點(diǎn)),連接OP,一動(dòng)點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到P,再沿線段PC以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)C后停止,請(qǐng)直接寫(xiě)出點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程的最少用時(shí).
【答案】(1)1;(2)y=2x;(3)6秒.
【解析】
(1)先求直線l1的解析式,從而可以求點(diǎn)B,點(diǎn)A的坐標(biāo),求出OA和OB即可求得tan∠BAO=;
(2)由S△AOC=9,OA=3即可求點(diǎn)C的縱坐標(biāo),點(diǎn)C是直線l1與直線l2的交點(diǎn),即可求出直線l2的解析式;
(3)過(guò)點(diǎn)C作CJ⊥y軸于J,過(guò)點(diǎn)P作PQ⊥CJ于點(diǎn)Q,由題意得,點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程的用時(shí)t==OP+QP,即點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程所用的時(shí)間是線段PO與PH的長(zhǎng)度之和,也就是點(diǎn)O、P、Q共線時(shí)有最小值.
(1)∵直線11:y=k1x+3經(jīng)過(guò)點(diǎn)A(﹣3,0),
∴0=﹣3k1+3,即k1=1且OA=3
故直線11的解析式為:y=x+3
∴直線l1:y=x+3與y軸交點(diǎn)是B(0,3)即OB=3
故tan∠BAO=.
(2)∵S△AOC=9,OA=3
∴點(diǎn)C到OA也就是到x軸的距離是6,由圖可設(shè)C(x,6)
∵C(x,6)是直線l1:y=x+3與直線l2:y=k2x的交點(diǎn)
∴,解得
故直線l2的解析式是:y=2x.
(3)如圖,過(guò)點(diǎn)C作CJ⊥y軸于J,過(guò)點(diǎn)P作PQ⊥CJ于點(diǎn)Q,
∵動(dòng)點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到P,遭到沿線段PC以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)C后停止
∴點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程的用時(shí),
∵tan∠BAO=知∠BAO=45°
故∠CPQ=∠ABO=45°
∴PQ=PCcos∠CPQ==
∴即點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程所用的時(shí)間是線段PO與PH的長(zhǎng)度之和
∴當(dāng)點(diǎn)P與點(diǎn)B重合,也就是點(diǎn)O、P、Q共線時(shí),OP+QP取得最小值,且(OP+QP)最小=OJ=6,
即點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程所用時(shí)間的最小值為6秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖直角坐標(biāo)系中,以M(3,0)為圓心的⊙M交x軸負(fù)半軸于A,交x軸正半軸于B,交y軸于C、D.
(1)若C點(diǎn)坐標(biāo)為(0,4),求點(diǎn)A坐標(biāo).
(2)在(1)的條件下,在⊙M上,是否存在點(diǎn)P,使∠CPM=45°,若存在,求出滿足條件的點(diǎn)P.
(3)過(guò)C作⊙M的切線CE,過(guò)A作AN⊥CE于F,交⊙M于N,當(dāng)⊙M的半徑大小發(fā)生變化時(shí).AN的長(zhǎng)度是否變化?若變化,求變化范圍,若不變,證明并求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交邊BC于點(diǎn)D,過(guò)點(diǎn)D作CA的平行線,交邊AB于點(diǎn)E.
(1)求線段DE的長(zhǎng);
(2)取線段AD的中點(diǎn)M,聯(lián)結(jié)BM,交線段DE于點(diǎn)F,延長(zhǎng)線段BM交邊AC于點(diǎn)G,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店正在熱銷一款電子產(chǎn)品,其成本為10元/件,銷售中發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價(jià)x(元/件)之間存在如圖所示的關(guān)系:
(1)請(qǐng)求出y與x之間的函數(shù)關(guān)系式;
(2)該款電子產(chǎn)品的銷售單價(jià)為多少元時(shí),每天銷售利潤(rùn)最大?最大利潤(rùn)是多少元;
(3)由于武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤(rùn)中抽出300元捐贈(zèng)給武漢,為了保證捐款后每天剩余利潤(rùn)不低于450元,如何確定該款電子產(chǎn)品的銷售單價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫(xiě)出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說(shuō)明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在面積都相等的所有矩形中,當(dāng)其中一個(gè)矩形的一邊長(zhǎng)為1時(shí),它的另一邊長(zhǎng)為3.
(1)設(shè)矩形的相鄰兩邊長(zhǎng)分別為x,y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②當(dāng)y≥3時(shí),求x的取值范圍;
(2)圓圓說(shuō)其中有一個(gè)矩形的周長(zhǎng)為6,方方說(shuō)有一個(gè)矩形的周長(zhǎng)為10,你認(rèn)為圓圓和方方的說(shuō)法對(duì)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,兩車各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)趟數(shù)是甲車的2倍,且乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①表示的是某商場(chǎng)2012年前四個(gè)月中兩個(gè)月的商品銷售額的情況,圖②表示的是商場(chǎng)家電部各月銷售額占商場(chǎng)當(dāng)月銷售總額的百分比情況,觀察圖①、圖②解答下列問(wèn)題:
(1)商場(chǎng)前四個(gè)月財(cái)務(wù)結(jié)算顯示四月份商場(chǎng)的商品銷售額比一月份下降了20%,請(qǐng)你求出商場(chǎng)四月份的銷售額;
(2)若商場(chǎng)前四個(gè)月的商品銷售總額一共是500萬(wàn)元,請(qǐng)你根據(jù)這一信息將圖①中的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小明觀察圖②后認(rèn)為,商場(chǎng)家電部四月份的銷售額比三月份減少了,你同意他的看法嗎?請(qǐng)你說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com