分析 (1)根據(jù)等腰三角形的性質(zhì),由PE=PF,PH⊥EF可判斷PH平分∠FPE,然后根據(jù)圓周角定理得到$\widehat{CQ}$=$\widehat{DQ}$;
(2)連結(jié)CD、OP、OQ,OQ交CD于B,如圖,先計(jì)算出PH=2$\sqrt{2}$,則可判斷△OPH為等腰直角三角形得到∠OPQ=45°,再判斷△OPQ為等腰直角三角形得到∠POQ=90°,然后根據(jù)垂徑的推理由$\widehat{CQ}$=$\widehat{DQ}$得到OQ⊥CD,
則根據(jù)平行線的判定方法得OP∥CD;
(3)直線CD交MN于A,如圖,由特殊角的三角函數(shù)值得∠α=30°,即直線MN、CD相交所成的銳角為30°,利用OB⊥CD得到∠AOB=60°,則∠POH=60°,然后在Rt△POH中利用正弦的定義計(jì)算出PH即可.
解答 (1)解:∵PE=PF,PH⊥EF,
∴PH平分∠FPE,
∴∠DPQ=∠CPQ,
∴$\widehat{CQ}$=$\widehat{DQ}$;
(2)證明:連結(jié)CD、OP、OQ,OQ交CD于B,如圖,
∵OH=2$\sqrt{2}$,OP=4,
∴PH=$\sqrt{{4}^{2}-(2\sqrt{2})^{2}}$=2$\sqrt{2}$,
∴△OPH為等腰直角三角形,
∴∠OPQ=45°,
而OP=OQ,
∴△OPQ為等腰直角三角形,
∴∠POQ=90°,
∴OP⊥OQ,
∵$\widehat{CQ}$=$\widehat{DQ}$,
∴OQ⊥CD,
∴OP∥CD;
(3)解:直線CD交MN于A,如圖,
∵cosα=$\frac{\sqrt{3}}{2}$,
∴∠α=30°,即直線MN、CD相交所成的銳角為30°,
而OB⊥CD,
∴∠AOB=60°,
∵OH⊥PQ,
∴∠POH=60°,
在Rt△POH中,∵sin∠POH=$\frac{PH}{OP}$,
∴PH=4sin60°=2$\sqrt{3}$,
即點(diǎn)P到MN的距離為2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了圓的綜合題:熟練掌握垂徑定理及其推理、圓周角定理;能夠靈活應(yīng)用等腰直角三角形的性質(zhì)和三角函數(shù)進(jìn)行幾何計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 169 | B. | 1690 | C. | 16900 | D. | 169000 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com