【題目】如圖,ABC是邊長為24的等邊三角形,CDE是等腰三角形,其中DCDE10,∠CDE120°,點EBC邊上,點FBE的中點,連接AD、DF、AF,則AF的長為_____

【答案】13

【解析】

作輔助線,構建直角三角形,先求CE的長,從而得FMAM的長,根據(jù)勾股定理可得AF的長.

解:過DDHBCH

DCDE10,

EHHC

∵∠CDE120°,

∴∠DCH30°

CHEH5,

CE10

BEBCCE2410,

FBE的中點,

BF125,

AAMBCM,

∵△ABC是等邊三角形,

BMBC12,AM12,

FMBMBF12﹣(125)=5

由勾股定理得:AF 13

故答案為:13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探索:小明在研究數(shù)學問題:已知ABCD,ABCD都不經(jīng)過點P,探索∠P與∠C的數(shù)量關系.

發(fā)現(xiàn):在如圖中,:∠APC=A+C;如圖

小明是這樣證明的:過點PPQAB

∴∠APQ=A(_ __)

PQAB,ABCD.

PQCD(__ _)

∴∠CPQ=C

∴∠APQ+CPQ=A+C

即∠APC=A+C

(1)為小明的證明填上推理的依據(jù);

(2)應用:①在如圖中,∠P與∠A、∠C的數(shù)量關系為__ _;

②在如圖中,若∠A=30 ,∠C=70 ,則∠P的度數(shù)為__ _;

(3)拓展:在如圖中,探究∠P與∠A,C的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一矩形紙片OABC放入平面直角坐標系xoy中,使OA,OC分別落在x軸、y軸上,現(xiàn)將紙片OABC沿OB折疊,折疊后點A落在點A'的位置,若OA=1,OB=2,則點A'的坐標為( )

A.
B.
C.(
D.(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交切線AC于點C,OC與圓O交于點E,連結BE、DE.

(1)若圓的半徑是3,∠EBA是30度,求AD的長度.
(2)求證:∠BED=∠C.
(3)若OA=5,AD=8,求切線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師家買了一套新房其結構如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x木地板的價格為每平方米3x,那么王老師需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新定義:若∠α的度數(shù)是∠β的度數(shù)的n倍,則∠α叫做∠βn倍角.

1)若∠M10°21′,請直接寫出∠M3倍角的度數(shù);

2)如圖1,若∠AOB=∠BOC=∠COD,請直接寫出圖中∠AOB的所有2倍角;

3)如圖2,若∠AOC是∠AOB3倍角,∠COD是∠AOB4倍角,且∠BOD90°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,過點x軸作垂線,垂足為點M,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接AF,過點Ay軸于點E,設點F運動的時間是t

若點Ey軸的負半軸上如圖所示,求證:;

如果點F運動時間是4秒.

求直線AE的表達式;

若直線AEx軸的交點為B,Cy軸上一點,使,求出C的坐標;

在點F運動過程中,設,,試用含m的代數(shù)式表示n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= 與雙曲線y= (k>0,x>0)交于點A,將直線y= 向上平移4個單位長度后,與y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,若OA=3BC,則k的值為( )

A.3
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程組

1)當取何值時,方程組有兩個不相同的實數(shù)解;

2)若;、是方程組的兩個不同的實數(shù)解,且,求的值.

查看答案和解析>>

同步練習冊答案