如圖,△ABC的三邊AB,BC,CA長(zhǎng)分別是20,30,40,其三條角平分線(xiàn)將△ABC分為三個(gè)三角形,則S△ABO:S△BCO:S△CAO等于


  1. A.
    1:1:1
  2. B.
    1:2:3
  3. C.
    2:3:4
  4. D.
    3:4:5
C
分析:利用角平分線(xiàn)上的一點(diǎn)到角兩邊的距離相等的性質(zhì),可知三個(gè)三角形高相等,底分別是20,30,40,所以面積之比就是2:3:4.
解答:利用同高不同底的三角形的面積之比就是底之比可知選C.
故選C.
點(diǎn)評(píng):本題主要考查了角平分線(xiàn)上的一點(diǎn)到兩邊的距離相等的性質(zhì)及三角形的面積公式.做題時(shí)應(yīng)用了三個(gè)三角形的高時(shí)相等的,這點(diǎn)式非常重要的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn),若∠A=40°,則∠DEF=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•邢臺(tái)一模)(1)如圖,RT△ABC的三邊長(zhǎng)分別為3、4、5,求△ABC內(nèi)切圓的半徑;
(2)如圖,△ABC的三邊長(zhǎng)分別為a、b、c,面積為S,其內(nèi)切圓的半徑為r,試用a、b、c和S表示r;
(3)如圖,四邊形ABCD的周長(zhǎng)為l,面積為S,其內(nèi)切圓的半徑為r,試用l、s表示r;
(4)若一個(gè)n變形的周長(zhǎng)為l,面積為S,其內(nèi)切圓的半徑為r,直接寫(xiě)出r、l和S的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的三邊AB、BC、AC的長(zhǎng)分別為4,6,8,其三條角平分線(xiàn)將△ABC分成三個(gè)三角形,則S△OAB:S△OBC:S△OAC=
2:3:4
2:3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的三邊長(zhǎng)分別為AC=12,AB=15,BC=9.若將△ABC沿線(xiàn)段AD折疊,點(diǎn)C正好落在AB邊上的點(diǎn)E處.求線(xiàn)段CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的三邊長(zhǎng)分別是6cm、8cm、10cm,現(xiàn)在分別取三邊的中點(diǎn)E、F、G,順次連接E、F、G,則△EFG的面積為
6 cm2
6 cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案