【題目】如圖,AEABAEAB,BCCDBCCD,請按圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的面積S是(

A.50B.62C.65D.68

【答案】A

【解析】

AEAB,EFFH,BGAG,可以得到∠EAF=ABG,而AE=AB,∠EFA=AGB,由此可以證明EFA≌△AGB,所以AF=BG,AG=EF;同理證得BGC≌△CHD,GC=DH,CH=BG.故可求出FH的長,然后利用面積的割補法和面積公式即可求出圖形的面積.

∵如圖,AEABAE=AB,EFFH,BGFHEAB=EFA=BGA=90,∠EAF+BAG=90,∠ABG+BAG=90EAF=ABG,

AE=AB,EFA=AGB,EAF=ABGEFA≌△AGB

AF=BG,AG=EF.

同理證得BGC≌△CHDGC=DH,CH=BG.

FH=FA+AG+GC+CH=3+6+4+3=16

S= (6+4)×163×46×3=50.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y= 的圖象相交于點A(﹣2,a),并且與x軸相交于點B.

(1)求反比例函數(shù)的表達式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將三角形ABC向右平移5個單位長度,再向上平移3個單位長度請回答下列問題:

1)平移后的三個頂點坐標(biāo)分別為:A1   B1   ,C1   

2)畫出平移后三角形A1B1C1;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點滿足.將線段先向上平移2個單位,再向右平移1個單位后得到線段,并連接

1)請求出點和點的坐標(biāo);

2)點點出發(fā),以每秒1個單位的速度向上平移運動.設(shè)運動時間為秒,問:是否存在這樣的,使得四邊形的面積等于8?若存在,請求出的值:若不存在,請說明理由;

3)在(2)的條件下,點點出發(fā)的同時,點從點出發(fā),以每秒2個單位的速度向左平移運動,設(shè)射線軸于點.設(shè)運動時間為秒,問:的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點A1,1),B-1,1),C-1,-2),D1,-2),把一根長為2017個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在A處,并按ABCDA→…的規(guī)律緊繞在四邊形ABCD的邊上.則細線的另一端所在位置的點的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,分別是上的點,作,垂足分別是 下面三個結(jié)論:①其中正確的是(

A.B.②③C.①②D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標(biāo)系中,A11,1)、A2(﹣1,1)、A3(﹣1,﹣1)、A42,﹣1)、A522)、A6(﹣22)、A7(﹣2,﹣2)、A83,﹣2)、A93,3)、……、按此規(guī)律A2020的坐標(biāo)為( 。

A.506,﹣505B.505,﹣504C.(﹣504,﹣504D.(﹣505,﹣505

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子科技公司開發(fā)一種新產(chǎn)品,公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標(biāo)分別為4、10、12,點A、B的縱坐標(biāo)分別為﹣16、20.

(1)試確定函數(shù)關(guān)系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內(nèi)所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AC=BC,C=90,AD是△ABC的角平分線,DEAB,垂足為E.求證:AB=AC+CD.

查看答案和解析>>

同步練習(xí)冊答案