如圖,在邊長為1的正方形網(wǎng)格中有兩個三角形△ABC和△DEF,試證這兩個三角形相似.

證明見解析.

解析試題分析:根據(jù)勾股定理分別計算△ABC與△DEF三邊長,根據(jù)三角形三邊的比值相等可以證明三角形相似,即可解題.
試題解析:由圖可知,AB=3, EF=2,由勾股定理得CB=,AC=
DF=,DE=
,


∴△ABC∽△DEF
考點: 1.相似三角形的判定;2.勾股定理.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;
(2)若EG·BG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,

(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,若以原點為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長是原五邊形對應邊長的3倍,請在下圖網(wǎng)格中畫出放大后的五邊形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知△ABC是等腰直角三角形,∠A=90°,點D是腰AC上的一個動點,過C作CE垂直于BD的延長線,垂足為E.

(1)若BD是AC邊上的中線,如圖1,求的值;
(2)若BD是∠ABC的角平分線,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了測量校園水平地面上一棵樹的高度,數(shù)學興趣小組利用一根標桿、皮尺,設計如圖所示的測量方案.已知測量同學眼睛A、標桿頂端F、樹的頂端E在同一直線上,此同學眼睛距地面1.6米,標桿為3.1米,且BC=1米,CD=5米,請你根據(jù)所給出的數(shù)據(jù)求樹高ED.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀理解:
如圖1,若在四邊形ABCD的邊AB上任取一點E(點E與點A,B不重合),分別連結ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,若∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,請直接寫出的值.

圖1                 圖2                       圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(),解答下列問題:

(1)當為何值時,PQ∥BC?
(2)設△AQP的面積為y(),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面積是54.求證:AC⊥BD.

查看答案和解析>>

同步練習冊答案