【題目】用一個長方形的紙片制作一個無蓋的長方體盒子,設這個長方形的長為a,寬為b,這個無蓋的長方體盒子高為c,只考慮如圖所示,在長方形的右邊兩個角上各剪去一個大小相同的正方形,左上角剪去一個長方形的情況,則這個無蓋長方體盒子的容積是______

【答案】8cm3

【解析】

根據(jù)長方體展開圖的特點結合所給數(shù)據(jù)求出長、寬、高,再根據(jù)長方體的容積為長××高計算即可.

解:如圖,∵無蓋長方體盒子的高為c1cm,

AGDF1cm,

ADb2c422cm,

BHBCAD2cm

ABacBH7124cm,

∴無蓋長方體盒子的長為4cm,寬為2cm,高為1cm,

∴這個無蓋長方體盒子的容積為:4×2×18cm3

故答案為:8cm3,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖 ,已知 中,AB=BC,,點 為斜邊 的中點,連接 ,AF 的平分線,分別與 BD、 相交于點 E、F

(1)求證:;

(2)如圖,連接 ,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形(不包含).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

小紅同學在學習過程中遇到這樣一道計算題“計算”,他覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!

獲取新知:

請你和小紅一起完成崔老師提供的問題:

1)填寫下表:

2)觀察表格,你發(fā)現(xiàn)有什么數(shù)量關系?請直接寫出之間的數(shù)量關系.

解決問題:

3)請結合上述的有關信息,計算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC,ACB=,∠B=,AC=1BC=,AB=2AC在直線l上,將ABC繞點A順時針轉到位置①可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,此時AP3=3+,按此順序繼續(xù)旋轉,得到點P2016,則AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 解方程:

13x+7322x;

24x320x+40;

3;

42;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,∠BAC=45°.

(1)尺規(guī)作圖:

①在CA的延長線上截取AD=AB,并連結BD;

②在∠BAC內部作∠CAE=ABD,交BC邊于點E;(保留作圖痕跡,不寫作法)

(2)求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD的四個角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

1)已知點,表示的數(shù)分別為1,-3.觀察數(shù)軸,與點的距離為3的點表示的數(shù)是____,兩點之間的距離為_____

2)數(shù)軸上,點關于點的對稱點表示的數(shù)是_____

3)若將數(shù)軸折疊,使得點與點重合,則與點重合的點表示的數(shù)是_____;若此數(shù)軸上,兩點之間的距離為2019(的左側),且當點與點重合時,點與點也恰好重合,則點表示的數(shù)是_____,點表示的數(shù)是_____;

4)若數(shù)軸上,兩點間的距離為 (左側),表示數(shù)的點到兩點的距離相等,將數(shù)軸折疊,當點與點重合時,點表示的數(shù)是_____,點表示的數(shù)是_____(用含,的式子表示這兩個數(shù))

查看答案和解析>>

同步練習冊答案