【題目】某地政府計劃為農(nóng)戶購買農(nóng)機設(shè)備提供補貼.其中購買Ⅰ型、Ⅱ型設(shè)備農(nóng)民所投資的金額與政府補貼的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.

型號
金額

Ⅰ型設(shè)備

Ⅱ型設(shè)備

投資金額x(萬元)

x

5

x

2

4

補貼金額y(萬元)

y1=kx(k≠0)

2

y2=ax2+bx(a≠0)

2.8

4


(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶共投資10萬元購買Ⅰ型、Ⅱ型兩種設(shè)備,兩種設(shè)備的投資均為整數(shù)萬元,要想獲得最大補貼金額,應(yīng)該如何購買?能獲得的最大補貼金額為多少?

【答案】
(1)

解:設(shè)購買Ⅰ型設(shè)備補貼的金額的解析式為:y1=kx,購買Ⅱ型設(shè)備補貼的金額的解析式為y2=ax2+bx,

由題意,得:2=5k,或 ,

解得:k= ,

∴y1的解析式為:y1= x,y2的函數(shù)解析式為:y2=﹣ x2+ x


(2)

解:設(shè)投資Ⅱ型設(shè)備a萬元,Ⅰ型設(shè)備(10﹣a)萬元,補貼金額為W萬元:

所以W=y1+y2= (10﹣a)+(﹣ a2+ a)

=﹣ (a﹣ 2+

所以當(dāng)a=3或4時,W的最大值= ,所

以投資Ⅰ型設(shè)備7萬元,Ⅱ型設(shè)備3萬元;或投資Ⅰ型設(shè)備6萬元,Ⅱ型設(shè)備4萬元,獲得最大補貼金額,最大補貼金額為 萬元


【解析】(1)利用待定系數(shù)法直接就可以求出y1與y2的解析式.(2)設(shè)總補貼金額為W萬元,購買Ⅱ型設(shè)備a萬元,購買Ⅰ型設(shè)備(10﹣a)萬元,建立等式就可以求出其值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+4(a≠0)與x軸交于點A和點B(2,0),與y軸交于點C,點D是拋物線在第一象限的點.

(1)當(dāng)△ABD的面積為4時,
①求點D的坐標(biāo);
②聯(lián)結(jié)OD,點M是拋物線上的點,且∠MDO=∠BOD,求點M的坐標(biāo);
(2)直線BD、AD分別與y軸交于點E、F,那么OE+OF的值是否變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).

(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).

(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中任意兩點P1(x1 , y1)、P2(x2 , y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點的直角距離,記作:d(P1 , P2).P0(2,﹣3)是一定點,Q(x,y)是直線y=kx+b上的一動點,稱d(P0 , Q)的最小值為P0到直線y=kx+b的直角距離.若P(a,﹣3)到直線y=x+1的直角距離為6,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,若∠BAC=80°,∠C=50°,取AC中點P,連接PO并延長交BC于點M,連接AM,則∠BAM=(
A.45°
B.30°
C.50°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在剛剛閉幕的2016全國“兩會”,民生話題依然是社會焦點,某市記者為了了解百姓對“兩會民生話題”的聚焦點,隨機調(diào)查了部分市民,并對調(diào)查結(jié)果進行整理.繪制了如圖所示的統(tǒng)計圖表(不完整).
頻數(shù)分布表

組別

焦點話題

頻數(shù)(人數(shù))

A

醫(yī)療衛(wèi)生

100

B

食品安全

m

C

教育住房

40

D

社會保障

80

E

生態(tài)環(huán)境

n

F

其他

60

請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= , n= . 扇形統(tǒng)計圖中E組,F(xiàn)組所占的百分比分別為
(2)該市現(xiàn)有人口大約800萬,請你估計其中關(guān)注B組話題的人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人關(guān)注A組話題的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當(dāng)點P到達點C時,點Q也停止運動.設(shè)點P,Q運動的時間為t秒.

(1)從運動開始,當(dāng)t取何值時,PQ∥CD?
(2)從運動開始,當(dāng)t取何值時,△PQC為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;
(2)解不等式組,并在數(shù)軸上表示不等式組的解集.

查看答案和解析>>

同步練習(xí)冊答案