【題目】如圖,中,點為邊上一點,過點作于,已知.
(1)若,求的度數(shù);
(2)連接,過點作于,延長交于點,若,求證:.
【答案】(1)∠BEA=70°;(2)證明見解析;
【解析】
(1)作BJ⊥AE于J.證明BJ是∠ABE的角平分線即可解決問題.
(2)作EM⊥AD于M,CN⊥AD于N,連接CH.證明△AEF≌△AEM(HL),△AGE≌△HGC(SAS),△EMA≌△CNH(HL),即可解決問題.
(1)解:作BJ⊥AE于J.
∵BF⊥AB,
∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,
∴∠ABJ=∠AEF,
∵四邊形ABCD是平行四邊形,
∴∠D=∠ABC,
∵∠D=2∠AEF,
∴∠ABE=2∠AEF=2∠ABJ,
∴∠ABJ=∠EBJ,
∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,
∴∠BAJ=∠BEJ,
∵∠BAE=70°,
∴∠BEA=70°.
(2)證明:作EM⊥AD于M,CN⊥AD于N,連接CH.
∵AD∥BC,
∴∠DAE=∠BEA,
∵∠BAE=∠BEA,
∴∠BAE=∠DAE,
∵EF⊥AB,EM⊥AD,
∴EF=EM,
∵EA=EA,∠AFE=∠AME=90°,
∴Rt△AEF≌Rt△AEM(HL),
∴AF=AM,
∵EG⊥CG,
∴∠EGC=90°,
∵∠ECG=45°,
∠GCE=45°,
∴GE=CG,
∵AD∥BC,
∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,
∴∠GAH=∠GHA,
∴GA=GH,
∵∠AGE=∠CGH,
∴△AGE≌△HGC(SAS),
∴EA=CH,
∵CM=CN,∠AME=∠CNH=90°,
∴Rt△EMA≌Rt△CNH(HL),
∴AM=NH,
∴AN=HM,
∵△ACN是等腰直角三角形,
∴AC= AN,即AN=AC,
∴AH=AM+HM=AF+AC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=,則△CEF的周長為( 。
A. 8 B. 9.5 C. 10 D. 11.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線:分別與軸、軸交于點、,且與直線:交于點,以線段為邊在直線的下方作正方形,此時點恰好落在軸上.
(1)求出三點的坐標(biāo).
(2)求直線的函數(shù)表達(dá)式.
(3)在(2)的條件下,點是射線上的一個動點,在平面內(nèi)是否存在點,使得以、、、為頂點的四邊形是菱形?若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種泰山旅游紀(jì)念品,4月份的營業(yè)額為2000元,為擴(kuò)大銷售量,5月份該商店對這種紀(jì)念品打9折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.
(1)求該種紀(jì)念品4月份的銷售價格;
(2)若4月份銷售這種紀(jì)念品獲利800元,5月份銷售這種紀(jì)念品獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市促銷活動,將三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝三種水果;乙種方式每盒分別裝三種水果 .甲每盒的總成本是每千克 水果成本的倍,每盒甲的銷售利潤率為;每盒甲比每盒乙的售價低;每盒丙在成本上提高標(biāo)價后打八折出售,獲利為每千克 水果成本的倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為時,則銷售總利潤率為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮計劃暑期結(jié)伴參加志愿者活動.小明想?yún)⒓泳蠢戏⻊?wù)活動,小亮想?yún)⒓游拿鞫Y儀宣傳活動.他們想通過做游戲來決定參加哪個活動,于是小明設(shè)計了一個游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標(biāo)記4、5、6三個數(shù)字,一人先從三張卡片中隨機抽出一張,記下數(shù)字后放回,另一人再從中隨機抽出一張,記下數(shù)字,若抽出的兩張卡片標(biāo)記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動,若抽出的兩張卡片標(biāo)記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動.你認(rèn)為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點E在BA延長線上,點F在BC上,且∠CDE=2∠ADF.
(1)求證:∠E=2∠CDF;
(2)若F是BC中點,求證:AE+DE=2AD;
(3)作AG⊥DF于點G,連CG.當(dāng)CG取最小值時,直接寫出AE:AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形中,,垂足為點,.
(1)如圖1,求證:;
(2)如圖2,點為上一點,連接,,求證:;
(3)在(2)的條件下,如圖3,點為上一點,連接,點為的中點,分別連接,,+==,,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com