【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為(
A.18
B.
C.
D.

【答案】B
【解析】解:∵四邊形ABCD是正方形,AB=12,BM=5, ∴MC=12﹣5=7.
∵ME⊥AM,
∴∠AME=90°,
∴∠AMB+∠CMG=90°.
∵∠AMB+∠BAM=90°,
∴∠BAM=∠CMG,∠B=∠C=90°,
∴△ABM∽△MCG,
= ,即 = ,解得CG=
∴DG=12﹣ =
∵AE∥BC,
∴∠E=CMG,∠EDG=∠C,
∴△MCG∽△EDG,
= ,即 = ,解得DE=
故選B.

【考點精析】利用勾股定理的概念和正方形的性質(zhì)對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交成的銳角為60°,若AC=6,BD=8,求ABCD的面積.( ,結果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的解析式為

(1)若拋物線與x軸總有交點,求c的取值范圍;
(2)設拋物線與x軸兩個交點為A(x1 , 0),B(x2 , 0),且x2>x1 , 若x2﹣x1=5,求c的值;
(3)在(2)的條件下,設拋物線與y軸的交點為C,拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,已知cos∠CDB= ,BD=5,則OH的長度為(
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班級45名同學自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經(jīng)費.通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學購買一件文化衫或一本制作精美的相冊作為紀念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費用為W元,求總費用W(元)與購買的文化衫件數(shù)t(件)的函數(shù)關系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應選擇哪種方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC=30°,M為AC上一點,AM=2,點P是AB上的一動點,PQ⊥AC,垂足為點Q,則PM+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DE∥BC,EF∥AB,要判定四邊形DBFE是菱形,還需要添加的條件是(
A.AB=AC
B.AD=BD
C.BE⊥AC
D.BE平分∠ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西寧市教育局在局屬各初中學校設立“自主學習日”,規(guī)定每周三學校不得以任何形式布置家庭作業(yè),為了解各學校的落實情況,從七、八年級學生中隨機抽取了部分學生的反饋表,針對以下六個項目(每人只能選一項):A.課外閱讀;B.家務勞動;C.體育鍛煉;D.學科學習;E.社會實踐;F.其他項目進行調(diào)查,根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽查的樣本容量為 , 請補全條形統(tǒng)計圖
(2)全市約有4萬名在校初中學生,試估計全市學生中選擇體育鍛煉的人數(shù)約有多少人?
(3)七年級(1)班從選擇社會實踐的2名女生和1名男生中選派2名參加校級社會實踐活動,請你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?并列舉出所有等可能的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

同步練習冊答案