【題目】如圖,長(zhǎng)方形ABCD中,AB=6,第一次平移長(zhǎng)方形ABCD沿AB的方向向右平移5個(gè)單位,得到長(zhǎng)方形A1B1C1D1,第2次平移將長(zhǎng)方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到長(zhǎng)方形A2B2C2D2,第n次平移將長(zhǎng)方形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到長(zhǎng)方形AnBnCnDn(n>2),若ABn的長(zhǎng)度為56,則n=_

【答案】10

【解析】

(1)根據(jù)平移的性質(zhì)得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,進(jìn)而求出AB1AB2的長(zhǎng);

(2)根據(jù)(1)中所求得出數(shù)字變化規(guī)律,進(jìn)而得出ABn=(n+1)×5+1求出n即可.

解:(1)∵AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1,

第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,

∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,

∴AB1=AA1+A1A2+A2B1=5+5+1=11,

∴AB2的長(zhǎng)為:5+5+6=16;

(2)∵AB1=2×5+1=11,AB2=3×5+1=16,

∴ABn=(n+1)×5+1=56,

解得:n=10.

“點(diǎn)睛”此題主要考查了平移的性質(zhì)以及一元一次方程的應(yīng)用,根據(jù)平移的性質(zhì)得出AA1=5,A1A2=5是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,且∠1=2.(1)指出∠1的對(duì)頂角;(2)若∠2和∠3的度數(shù)比是2:5,求∠4和∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明不小心把一塊三角形形狀的玻璃打碎成了三塊,如圖①②③,他想要到玻璃店去配一塊大小形狀完全一樣的玻璃你認(rèn)為應(yīng)帶( 。

A. B. C. D.

【答案】C

【解析】試題分析:根據(jù)全等三角形的判定方法帶去可以利用角邊角得到全等的三角形.

故選C

考點(diǎn):全等三角形的應(yīng)用.

型】單選題
結(jié)束】
12

【題目】如圖,要測(cè)量池塘的寬度AB,在池塘外選取一點(diǎn)P,連接AP、BP并各自延長(zhǎng),使PC=PA,PD=PB,連接CD,測(cè)得CD長(zhǎng)為25m,則池塘寬AB________m,依據(jù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC,ADCEBECE,垂足分別為D、E

(1) 求證:CDBE

(2) AD3.5 cmDE2.7 cm,求BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,AB坐標(biāo)為(6,0)、(0,6),P為線段AB上的一點(diǎn)

(1) 如圖1,若SAOP12,求P的坐標(biāo)

(2) 如圖2,若PAB的中點(diǎn),點(diǎn)M、N分別是OA、OB邊上的動(dòng)點(diǎn),點(diǎn)M從頂點(diǎn)A、點(diǎn)N從頂點(diǎn)O同時(shí)出發(fā),且它們的速度都為1 cm/s,則在M、N運(yùn)動(dòng)的過(guò)程中,線段PM、PN之間有何關(guān)系?并證明

(3) 如圖3,若P為線段AB上異于AB的任意一點(diǎn),過(guò)B點(diǎn)作BDOP,交OP、OA分別與F、D兩點(diǎn),EOA上一點(diǎn),且∠PEABDO,試判斷線段ODAE的數(shù)量關(guān)系,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市規(guī)劃中某地段地鐵線路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測(cè)算出A、B間的距離.工程人員在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測(cè)得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名運(yùn)動(dòng)員進(jìn)行射擊選撥賽,每人射擊10次,其中射擊中靶情況如下表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

(1)選手甲的成績(jī)的中位數(shù)是__________分;選手乙的成績(jī)的眾數(shù)是__________分;

(2)計(jì)算選手甲的平均成績(jī)和方差;

(2)已知選手乙的成績(jī)的方差是1.4,則成績(jī)較穩(wěn)定的是哪位選手?(直按寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價(jià)格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫(huà)出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個(gè)采摘園較為優(yōu)惠?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案